This article describes the research and development of an NSF-funded, five-year experimental program to strengthen informal (out-of-school) STEM learning by youth in five rural communities. The central component of the model was a cadre of community members known as ‘STEM Guides’ who were hired to work as brokers between youth and the STEM learning resources potentially available to them. These STEM Guides were respected adults with credible connections to youth, flexible schedules, the ability to travel within the community, and enthusiasm for identifying local STEM resources. The Guides were
This document is the final summative evaluation report written by EDC, the external evaluator of the STEM Guides project. The report concludes that the project was highly ambitious, with many dynamic and evolving pieces. It was deemed successful as a model of brokering connections between students aged 10-18 and STEM resources and opportunities in rural Maine communities. The STEM Guides program contributed to the increase in STEM awareness within each community, as well as connecting youth with interesting and relevant STEM experiences.
The purpose of this study was to examine the nature of docent expertise. To achieve this purpose, the following questions guided the research: 1) What are the characteristics that define an expert docent? 2) What types of learning experiences lead to the development of expertise? 3) How does the museum context shape docent learning? and 4) What is the process for becoming an expert docent?
A qualitative research approach was employed. In-depth interviews were conducted with twelve participants to obtain data on how museum docents learned their craft and developed expertise. A purposeful
The materials provided in this guide are intended to introduce educators and program facilitators to concepts related to STEM identity and to help educators practice noticing and responding to the dynamics of STEM identity development in their own programs. These concepts are abstract, and we have accordingly provided a variety of materials to help make them more understandable, practical, and relevant. The tool includes (a) background reading and discussion questions to introduce STEM identity and related concepts; (b) two example scenarios from our research to allow educators to practice
We found that the learners seeking out resources to teach themselves to code were generally college educated women who were motived either by the desire to be able to read and understand the code written by hired developers or the desire to become developers themselves. The importance of a female-focused learning setting was mixed; while most women acknowledged a more comfortable atmosphere created by such a setting, very few cited that as a primary reason for joining the group.
All learner participants in this study persisted through the ten weeks of the Women’s Coaching and Learning
In 2016, ETR received a National Science Foundation grant to study, under Principal Investigator Louise Ann (“Lou Ann”) Lyon, PhD, a newly formed, real-world organization dedicated to helping women in the workforce learn to write computer code. This project formed a partnership between a research team with experience in computer science (CS) education and learning sciences research and a newly fashioned practitioner team focused on building a grassroots, informal, volunteer group created to help women help themselves and others learn to write computer code. This research-practitioner
In order to engage visitors, guests, participants or audiences in positive STEM learning experiences, informal learning institutions need professionals who understand how to design for and facilitate engaging activities. Initial professional training for informal STEM educators, and subsequent ongoing professional learning create considerable challenges. There is a need for providing informal STEM educators with pathways to professionalization that guarantee high quality educators who can support successful informal STEM education. In this symposium, we propose to share research on key aspects
Communicating about environmental risks requires understanding and addressing stakeholder needs, perspectives, and anticipated uses for communication products and decision-support tools. This paper demonstrates how long-term dialogue between scientists and stakeholders can be facilitated by repeated stakeholder focus groups. We describe a dialogic process for developing science-based decision-support tools as part of a larger sea level rise research project in the Gulf of Mexico. We demonstrate how focus groups can be used effectively in tool development, discuss how stakeholders plan to use
DATE:
TEAM MEMBERS:
Denise DeLormeSonia StephensScott HagenMatthew Bilskie
This comment focuses on an early case of an open infrastructure that emerged in the 1990s in international astronomy. It targets the reasons for this infrastructure’s tremendous success and starts with a few comments on the term ‘digital infrastructure’. Subsequently, it provides a brief description of the most important components of the infrastructure in astronomy. In a third step, the use of one component — the arXiv, an open access repository for manuscripts — is analyzed. It concludes with some considerations about the success and acceptance of this infrastructure in astronomy.
DATE:
TEAM MEMBERS:
Niels Taubert
resourceresearchProfessional Development, Conferences, and Networks
While most researchers still primarily use emails and simple websites for professional communication, the number of specialised online portals, information services and scholarly social online networks is constantly growing. This development led to the 6th workshop organized by the team of openTA, an online portal for technology assessment. This issue of JCOM pools commentaries on the workshop which deal with questions such as: what are the criteria of successful digital infrastructures? Which potential for changing workflows or scholarly interaction and collaboration patterns do we ascribe to
DATE:
TEAM MEMBERS:
Dirk Hommrich
resourceresearchProfessional Development, Conferences, and Networks
This report grew out of a workshop and follow-up session sponsored by the National Science Foundation (NSF), Directorate for Education and Human Resources (EHR). The two-day workshop and subsequent meeting sought to develop and validate evaluation practices to assess the value of NSF's investment in broadening participation across all directorates and programs. Invited participants included NSF grantees, professional evaluators, and the policy community (which included representatives from Congress, the Office of Management and Budget (OMB), NSF staff, and staff from other federal agencies).
DATE:
TEAM MEMBERS:
Fitzgerald BramwellPatricia CampbellBeatriz Chu ClewellDarnella DavisNorman FortenberryAntonio GarciaDonna NelsonAdam StollVeronica Thomas
Exploratorium’s The Phenomenal Genome: Evolving Public Understanding of Genetics in the Post-Mendelian Era project addresses the increasing need to develop genomic literacy in the public at large. The explosion of genomics research over the past two decades has led to an increasingly complex picture of the determinants of human health and human phenotypes, and the applications of this research are now making their way into the clinic, the media, and the hands of consumers. The goal of this project is to create a model for increasing genomic literacy through Informal Science Education programming (ISE), creating a pathway for better decision making for the health of individuals and society at large. The Phenomenal Genome focuses on general science museum visitors and teachers of middle and high school students.
The core of the Exploratorium’s approach to science education is the creation of intriguing, provocative and investigable phenomena that are experienced directly and personally through exhibits, facilitated explorations, programs, and teacher professional development. Over two years, we will develop, test, and iterate inquiry-based professional development to help teachers develop understanding and integrate the principles of contemporary genomics and genetics into their classrooms. 120 middle and high school teachers will be served during this period, and many more beyond that, as the activities and workshops developed become a regular part of our teacher professional development programming. A learning scientist specializing in teacher learning will conduct research to determine which approaches and experiences are most effective for this context, and why.
In a parallel process, we will develop and test exhibits and experiences on the museum floor for museum visitors, using a similar iterative process of prototype testing with an embedded learning scientist to study visitor learning. We plan to define the approaches that work across audiences and contexts, as well as those that work best in particular contexts.
Through this work, we will develop new resources for teaching and learning contemporary genomics and genetics, and identify promising practices in communicating contemporary genomics and genetics in informal spaces across audiences. We will disseminate our findings via conferences, peer-reviewed articles, and workshops for the ISE community.