This proof-of-concept project is a collaboration of the Museum of Science in Boston, WGBH's National Center for Accessible Media (NCAM) and Ideum. The project will demonstrate that the project team can design and develop digital interactive museum exhibit devices that work for visitors who have a wide range of disabilities. The outcome will be one "exemplar" exhibit based on an exhibit scenario where museum visitors learn STEM concepts by manipulating and analyzing real data. The project will also develop and test the efficacy of a prototype Do-It-Yourself (DIY) Toolkit that will help other museum professionals implement the digital interactive strategies. In addition, the project will produce a white paper on the specific exemplar and a research paper with guidelines for digital interactive exhibits in museum. The project uses an innovative workshop approach that brings together individuals from a diverse range of fields to develop the digital interactive strategies. After developing the "exemplar" exhibit, the team will develop the DIY Toolkit and test the efficacy of the Toolkit in museums that do not have the same level of exhibit development resources as larger institutions. The the project's evaluation will not only determine if the exemplar works well with a wide range of people with disabilities, but also determine the cost-effectiveness and efficacy of the workshop strategy and the ability of other museums to use the DIY toolkit. If successful, this project will attend to an area of high need in the informal science education (ISE) museum exhibit community and provide a resource that will serve a wide range of ISE institutions. If the project evaluation outcomes are positive, the project will lead to a larger effort to develop more exemplar exhibits based on different scenarios and an expansion of the DIY Toolkit.
This project will develop a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the discoveries from this scientific discipline. The Space Science Institute will capitalize on its prior successes and the success of other education programs to develop a comprehensive and integrated program that has the following five components: (1) the Space Weather Center website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. Partners include UC Berkeley's Space Sciences Laboratory; the American Library Association; Macerich: a mall developer with nationwide impact; and the Math, Engineering, Science Achievement program. The project brings together a creative collaboration between exhibit designers, graphic artists, formal/informal educators, and research scientists. The project spans a full spectrum of science communication strategies (formal, informal, and public outreach). The evaluation part of the project will examine how well the project elements work together and a pilot research study will explore the efficacy of online digital games for communicating complex space weather content. Results will be published and the findings presented at professional meetings and online. The three-year project is expected to impact well over two million people, including exhibit and website visitors and outreach visitors at various venues such as libraries and malls.
This award provides continued funding for a 3D High Definition (HD) video documentary about an international group of earth scientists engaged in an investigation of the processes responsible for central Mongolia's unusually active uplifting terrain (the Hangay Dome) and its consequences for regional climate patterns and ecosystems (EAR -1009702). The Hangay Dome in central Mongolia provides an excellent and accessible laboratory to investigate these processes and determine the degree to which mantle upwelling, mafic underplating, lithospheric foundering or plume activity have been important agents in its uplift.
A national facility a three-system ground-based mobile radar fleet, the Doppler On Wheels (DOWs). The three systems include two mobile X-band Doppler on Wheels and the 6 to 12 beam "Rapid Scan DOW". These radar systems have participated in research projects that have covered a broad range of topics including individual cumulus cloud studies, orographic precipitation and dynamics, hydrologic studies, fire weather investigations, severe convective storms and tropical cyclones at landfall. DOWs can be frequently utilized on site for educational activities, such as being part of a university atmospheric instrumentation courses. The DOWs can be operated by students with minimal, often remote, technical supervision. The DOWs add significantly to the facility infrastructure of the atmospheric sciences community.
This Small Business Innovation Research (SBIR) Phase I project will demonstrate the feasibility of engaging children ages 8 to 13 in the wonders of science and the application of scientific principles through the transmedia SCIENTASTIC! project. The study will also demonstrate that the television series will help students answer questions and solve problems for themselves and their community. The American public supports the advancement of scientific knowledge and our investment in scientific research leads the world. However, Americans are falling behind in educating the next generation of scientists. Late elementary school is an ideal time to capture students' attention and engage them in STEM activities. Using rigorous evaluation techniques we will show that SCIENTASTIC! encourages hands-on learning by exploration, questioning and thinking. The innovative television program and integrated companion resources provide scientific role models and demonstrate the scientific process in an entertaining way. The associated web site, Apps, Web 2.0 repository and teaching aids allow students, teachers, and parents to further explore concepts introduced in the show. Preliminary analysis reveals that the SCIENTASTIC! target audience liked the show, would watch the show and learned from the show. Further analysis will demonstrate that the transmedia approach increases viewer interest and learning. The broader impact/commercial potential of this project will play a transformative role in encouraging students to take STEM courses in college, pursue scientific careers, and become a scientifically informed electorate. By developing the story beyond the story, transmedia SCIENTASTIC! has strong commercial value. Dissemination through public television allows for a potential audience of 250 million people. Commercial and noncommercial sponsorships will be sold with associated on-air credits. Additional direct funding will be sought from industries with interests in promoting science and health literacy. A commercial version of the program will be offered to cable networks on a licensing basis, with DVDs, Apps and study guides sold to schools, homeschoolers, and parents. With a broad and commercially viable dissemination, SCIENTASTIC! will show children the joys of science by demonstrating and engaging in hands-on, team- based learning in real-world contexts. This process will improve student retention and will show that SCIENTASTIC! introduces new ways to learn. The SCIENTASTIC! project will evaluate teaching techniques information that will be shared with policy-makers, educational institutions, and teachers to improve education nationwide. By spreading successful methods for engaging children in math and science, SCIENTASTIC! shoiuld have significant societal benefit creating a generation of scientifically educated decision-makers.
Planet Earth Television (PET) created Scientistic!, a television series that focuses on a young girl's scientific investigations of the world around her. The pilot episode, Sticks and Stones, explored bones and how they heal. A website and iPad app were also developed to supplement the program. REA evaluated the impact of the television program, website, and app on youth's knowledge about and interest in science and specific topics related to bone health and healing. REA recruited youth (grades 1-7) to participate either at home with their families or in a classroom with their teachers. REA
Family groups comprise a significant percentage of the museum visitor population, and many programs are created specifically for young learners (Borun, 2008). One such learning environment is that of planetaria, where both live and pre-recorded programs are presented to introduce concepts in Earth and Space Science to young children. Pacific Science Center’s Preschool Trip to the Moon live, interactive planetarium program was used as a context for exploring families’ motivations for attending a planetarium show, their reactions to the show, and in particular what children learned from the show
This evaluation examines visitor engagement at the “Science On a Sphere” (SOS) exhibit at Pacific Science Center, Seattle, WA. Evaluators varied characteristics of the data presentation—such as topic presented, presence of a question prompt, and image rotation—and measured the resulting visitor engagement for each of the different treatments. Furthermore, the evaluation examined visitors’ interest in the SOS exhibit, as well as the extent to which visitors connect the exhibit to surrounding exhibits. This study examines different treatments to the SOS exhibit to determine the presentation
DATE:
TEAM MEMBERS:
University of Washington | Pacific Science CenterDylan HighDanielle AcheampongEllie KleinwortTravis Windleharth
Through "Addressing the Science of Really Gross Things: Engaging Young Learners in Biomedical Science Through a Fulldome Planetarium Show and Supporting Curricula," Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill, in close collaboration with NIH-funded researchers at the UNC and a leading children's book author, will develop an informal science education media project and a suite of hands-on, inquiry-based curricula based on the media project for use in science centers, museums and schools. This project will build the pipeline of future researchers and create awareness of NIH-funded research by generating interest and excitement among children age 9-13 in the health sciences and related careers and building their science content knowledge. To achieve the objective, the investigators will develop a fulldome planetarium show; create correlating curricula for summer camps, afterschool programs, scout programs, science center field trips, science clubs and schools; and produce a DVD highlighting careers in the health sciences. In addition, the project will use several methods to target populations traditionally underrepresented in the biomedical fields, including featuring professionals from underrepresented populations in the multimedia and curricula products, making outreach visits to counties with large populations traditionally underrepresented in health science research careers, and producing a Spanish-language version of the products. The use of a known brand, "Grossology," is an innovative way to connect to children in the target age range and to encourage the informal science education community to embrace health-science content in their fulldome theaters. In addition, the project's hub-and-spoke approach further encourages adoption of this programming by providing informal science venues with both an engaging experience (hub) and the supporting curricula (the spokes) that is necessary to extend the show's potential for having significant educational impact. A strong project team maximizes the project's likelihood for success. The team includes fulldome producers and educators from Morehead and NIH-funded researchers with expertise in appropriate science content areas. In addition, the investigators have created a network of consultants, advisory board members and evaluators that will create feedback loops designed to ensure high-quality, scientifically-accurate, educationally-effective products. The investigators will use a combination of free and revenue-based dissemination strategies to ensure that the products of this award are broadly distributed. These strategies hold significant promise for creating broad use of this project's products in the nation's science centers, museums and classrooms.
The American Museum of Natural History requests SEPA support for a five-year development and implementation project entitled "Human Health and 'Human Bulletins': Scientists and Teens Explore Health Sciences in the Museum and World At Large." The program has three complementary components: (1) the development of 7 new productions for the Museum's digital media/documentary exhibition program, Human Bulletins http://sciencebulletins.amnh.org) featuring the newest health-related research; (2) a mini-course, entitled Hot Topics in Health Research NOW, an intensive after school program covering genetics, epidemiology, human health and human evolution, including a section on ethics in research; and (3) A "drop-in" Human Bulletins Science Club, where students meet monthly to watch a Human Bulletin visual news program, engage in informal discussions with significant researchers in the fields of evolutionary science and human health. The main goals of this project are: (1) to inform young people about emerging health-related research by using the Human Bulletins as core content for programming and points of engagement; (2) to promote a life-long interest in science among participants by teaching them how health-related science research could potentially affect them or their families; (3) to empower teens to critically assess the science presented to them in the Museum and in the world at large by teaching them to break down the "information bytes" of the Human Bulletins and to analyze how stories are presented visually and how to find answers to questions raised by the Bulletins; (4) for the young people in the program to see themselves as participants in the Museum by developing "mentor" relationships with Museum staff. This will allow students to see AMNH as an enduring institution to be used as a resource throughout their education and careers; and (5) to give students the means to envision themselves with future careers in science, research and in museums (thus fostering new generation of culturally-diverse, culturally enriched scientific leaders) by introducing them to scientists in an informal setting where there are no consequences for making mistakes or asking questions. The students will be given "behind the scenes" looks at new career options through the scientists featured in the Bulletins and the NIH funded researchers on the Advisory Board presenting at the informal sessions. Ultimately, the project aims to give students to critically process the information they receive about public health, see the relevance of human health science to their lives and pursue careers in health science. All of these skills are measurable through formative and summative evaluation. This project will teach young people to understand information about public health that is presented to them through visual and popular media as well as through formal scientific texts. It will also teach them to think about how human health sciences impact their lives and how the decisions they make impact larger human health. Finally, the program will also encourage students to pursue careers and further information about public health.
Field trips to science museums can provide students with educational experiences, particularly when museum programs emphasize scientific inquiry skill building over content knowledge acquisition. We describe the creation and study of 2 programs designed to significantly enhance students' inquiry skills at any interactive science museum exhibit without the need for advanced preparation by teachers or chaperones. The programs, called Inquiry Games, utilized educational principles from the learning sciences and from visitor studies of museum field trips. A randomized experimental design compared
The Massachusetts Linking Experiences and Pathways Follow-on (M-LEAP2) is a three-year longitudinal empirical research study that is examining prospectively how early formal and informal STEM education experiences are related to gender-based differences in STEM achievement-related choices in middle and high school. M-LEAP2 serves as a complement to - and extension of - a prior NSF-funded study, M-LEAP, which was a largely quantitative research study that followed overlapping cohorts of 3rd - 6th grade female and male students for three years. M-LEAP surveyed over 1,600 students, 627 student-parent pairs, and 134 second parents in 8 diverse public schools across Massachusetts. In contrast, M-LEAP2 is a heavily qualitative three-year study using in-depth interviews with a diverse range of 72 of these students and their families to study how formal and informal science experiences shape the students' science-related beliefs, interests, and aspirations as they progress though middle and high school.