This project will help address the urgent need for a new engineering workforce. Middle school students will be entering a workforce that is increasingly global. They will need not only technical skills but also global competencies including: the ability to investigate the world, recognize perspectives, communicate ideas, and take action. This model integrates engineering with global competencies and will provide new knowledge about how this type of learning experience impacts students and educators. This project builds on the success of the previous Design Squad project funded by NSF and developed by WGBH, which has implemented a national model for engineering education for middle school youth. This project expands the model internationally, connecting U.S. based youth with those in Southern Africa (including South Africa, Botswana, and Swaziland). The project partners are FHI 360, a non-profit organization in 60 countries around the world that helps build capacity for improving lives. They will facilitate the implementation of the afterschool programs in Southern Africa . The US dissemination partners include Promise Neighborhoods Institute, Middle Start, Every Hour Counts, and the National Girls Collaborative Project. Project deliverables include a global engineering curriculum; a web platform with videos, games, activities; an afterschool Club Guide; and a Community of Practice for informal engineering educators. A knowledge building component will provide new evidence on how high quality accessible resources and strategies can impact students' development of global competencies and engineering skills to solve real world problems. An iterative approach will be used to develop the resources including the global engineering afterschool curriculum, Club guide, and other components. The methodology uses a continuous cycle of improvement including: assess/design, test/ implement, synthesize/reflect, and utilize/disseminate. The Summative Evaluation will generate evidence about whether and how this kind of collaborative work builds children's understanding of engineering, motivation to participate, and confidence in taking informed action on behalf of pressing global problems. This will contribute to a larger body of work about whether and how engaging with global, collaborative engineering problems leads to greater self-efficacy for children with very different backgrounds, experiences, and opportunities. This project will add new knowledge about how the well-honed Design Squad model in the U.S. can be expanded with a global context and global partners. This proposal was co-funded by EHR/DRL, Engineering/EEC, and International Science and Engineering. During the project period approximately 125,000 children in the US and 5000 children in southern Africa will be reached. In the long term, with the continued global access to the resources, the reach will potentially be in the millions.
The Rutgers Film Bureau in collaboration with the scientists of the LTER (Long Term Ecological Research) project at Palmer will produce a multi-platform documentary project, Antarctic Quest: Racing to Understand a Changing Ocean. This Connecting Researchers to Public Audiences proposal will focus on the scientists who are studying ocean physics, chemistry, biology, and ecology in the West Antarctic Peninsula (WAP), which is the fastest winter warming location on earth. The aim of the project is to promote scientific knowledge about the world's oceans and climate change, inspire interest in scientific careers, as well as train a cadre of next generation film students in the craft of science documentary filmmaking. The project will articulate the research of the Palmer LTER's quest to understand the impact of climate change on the marine ecosystems of the WAP, while involving university students in the filmmaking process. Deliverables include an hour television documentary intended for PBS television broadcast, an online "Antarctic Quest community" created through interactive and interconnected social media, three five-minute educational videos produced for the PBS Learning Media website, and a Digital Media Library to assist Earth science educators. The production team will employ a diverse group of twenty film students from Rutgers University to be involved in the many phases and components of the project. The project is designed to advance the public's environmental literacy. The project will raise awareness of the changes being observed in the world's oceans by illustrating how small changes in the physical conditions in the WAP can have profound impact on marine ecosystems and potentially the entire ocean system. The project will also highlight the significance of innovative new technologies that are revolutionizing research methods as well document the importance of scientific collaboration to understand a complex interdisciplinary problem and the challenges of working in extreme environments. The summative evaluation of the project will assess the effectiveness of the project in meeting its educational goals. By communicating significant scientific research to the public while training a cohort of next generation of science documentary filmmakers, the project will also contribute to capacity-building in the Informal Science Education field.
This project will research factors influencing the implementation of programs designed to increase diverse participation in informal science. The goal is to provide the informal science education field with information and tools that will help them design effective programs that more effectively engage a broad range of diverse audiences. The project has two major components. First, the project will research the implementation of a citizen science project, Celebrate Urban Birds (CUB), in major U.S. cities. Citizen science projects involve public volunteers in gathering scientifically valid data as part of ongoing research. Second, building on results of the research, the project will launch a website and learning community (called a Community of Practice or CoP) supporting informal science educators that are involved in designing and implementing informal science programs with an emphasis on engaging diverse participants. The project will be lead by the Cornell Lab of Ornithology (CLO), a leader in designing and researching citizen science projects, in collaboration with the Association of Science-Technology Centers (ASTC) and five science center members of ASTC, where the CUB program will be implemented and researched. The objective of the research is to better understand contextual factors and how they impact implementation even when accepted practices are followed. Such research is key not only to revealing accepted practices but also to understanding how projects are implemented in the face of concrete operational, cultural, economic, and demographic variables. The research will use a comparative case study approach, which is designed for studies requiring holistic, in-depth investigation. The development of the website and the CoP will be guided by a Network Improvement Strategy, a research-based approach to designing educational CoPs. The development of the CoP will involve the project stakeholders including the informal science organization practitioners, community organization representatives, CUB staff, ASTC staff, advisors and consultants. This strategy will allow the project team and pilot sites to leverage their diverse experiences and skill sets to improve practice; provide space for researchers and practitioners to work together as partners; and develop a nuanced set of strategies that can be implemented across a variety of organizational contexts.
This Michigan State University and University of Texas-Austin project will focus on making science communication more scientific. It will primarily use interview and survey research to improve societal understanding of how those involved in science communication, particularly scientists, think about science communication. The goal is to use this knowledge to help improve science communication training and recruiting with a focus on increasing the likelihood that scientists will adopt evidence-based communication strategies to increase public interest, engagement, and identification with science, technology, engineering, and math (STEM). A central underlying reason for the study is a mismatch between scientists' motivations and goals when interacting with public audiences and what research suggests would be the most positive and productive with public audiences. This study is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will be conducted in three phases. The first is interviews with a wide range of science communication experts to assess priority research questions. These interviews will be followed by surveys with U.S.-based members of up to 10 different scientific societies representing a broad range of academic fields as well as a survey of science communication researchers. The survey will focus on three different public engagement modes, including face-to-face engagement, online engagement, and engagement via the news media. Consistent with the Theory of Planned Behavior, the surveys will assess scientists' attitudes about public engagement and specific public engagement goals, as well as perceptions of social norms (both descriptive and injunctive) and efficacy beliefs (both internal and external). These will be used as predictors of general and goal-specific engagement willingness, as well as reported past behavior, using multigroup modeling. Potential communication goals of interest include transferring knowledge, developing interest and excitement, building trust in scientists, demonstrating openness and a willingness to listen, shaping how people think about subjects (i.e. framing), and/or defending science. The final phase of the project will explore the potential to design experiments aimed at testing the impact that mention of specific goals has on communication training recruitment as well as the degree to which online content about various goals is attractive to scientists interested in developing their communication skills. The research is the most targeted and largest attempt to date to understand how scientists' views about the public and communication processes may shape science communication behavior.
This early-stage design and development, integrated media and research project will contribute important new understandings to the informal science learning literature by exploring science engagement on social media when integrated with broadcast television. It will help answer questions including: What does such engagement look like? Who participates? How and why does it happen? and What is the degree or depth of engagement? The project builds on the previous successful work by WGBH nationally distributing the television series NOVA scienceNOW and the research expertise of EDC. WGBH's NOVA scienceNOW program will collaborate with EDC to develop new metrics to understand how and why learners engage with science on social media. Deliverables will include six one-hour episodes of NOVA scienceNOW, short online videos, moderated online discussion events, and an online film festival. A new social Media Initiative will develop six live broadcast microblogging events, six post-broadcast online discussion events, daily social media updates, and an online film festival that will feature user generated videos. A range of STEM content in the videos and online posts will be framed around big science and engineering questions such as animal communication and survival systems, the biology of sleep, climate change, new technologies, energy, genetics, and natural disasters. The continued innovations and expansion of social media channels provides significant new opportunities for providing learner's access to high quality science content, researchers, and opportunities to participate in science. In the first phase of this work to deepen the evidence based understanding of how social media supports informal science engagement, NOVA and EDC will collaborate to develop new measurement instruments: (1) a Network Profile to quantitatively represent the size and activity of NOVA's social media network; (2) an Informal Science Engagement (ISE) index to measure the degree of engagement by coding and analyzing conversations and posts; (3) a Follower Profile to assess the degree of activity and the nature of the engagement; and (4) a Science Social Media Engagement survey instrument. They will then use these measures and data collection protocols to explore whether and how the initiative might influence science engagement. External expert reviewers with content and methodological expertise will review all aspects of the project at critical junctures. This project will contribute important new knowledge and research instruments and methods to better understand how the learning opportunities of social media channels can be realized most effectively. This has significant potential for broad and lasting benefits to society as well as advancing the informal science learning field.
For over two decades NSF has been investing in the development and evaluation of giant screen films for viewing by audiences in science centers and museums. These have been highly successful in terms of audiences reached and project evaluations that indicate their impact on learning. Less well understood is how the unique attributes of giant screen films (e.g., "immersion" and "presence") affect learners in ways that differ from other film formats. This integrated research and media project will contribute to that knowledge base. Project deliverables will include a giant screen film that tells the story of the discovery of biological mimicry (the critical proof for natural selection and in turn, evolution) through the life story of Henry Bates and his travels through the Amazon rainforest more than 150 years ago; 2D dome, and 2D flat format versions; live interactive science demonstrations and educational resources; and workshops for ISE professionals. The film and the related outreach via science centers, social media, and the web are expected to reach large public audiences; workshops and web resources will reach ISE professionals nationally. A strategy for reaching underrepresented audiences through science museums and partnerships with educational societies is a part of the broadening participation effort. Building on results of an NSF-funded workshop in which researchers, evaluators, and filmmakers began to develop a research agenda to provide evidence about giant screen attributes and their impacts on learning, the research component of this project will focus on the differences in learner knowledge among the various film formats, their unique attributes, and whether format plays a role in science interest and science identity. A baseline study will be conducted to begin gathering evidence on how each of these formats affects learning. Data on audience knowledge gains, interest, and science identity will be collected using a novel tablet-based game-like assessment pre-film viewing, immediately post viewing, and in a later follow-up. These baseline data will inform follow-on research that, over time, can better explain the unique impacts on learning of the giant screen format. Project partners include the Pacific Science Center, SK Films, Howard Hughes Medical Institute, Rutgers University, and Arizona State University.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Nationally, the US has a shortage of computer scientists; a big part of this problem is that girls are discouraged from learning computer science at a very young age. This project tries to address this problem by creating a videogame specifically oriented towards getting middle school girls interested in learning computer science concepts outside traditional programming classes. Based on evidence that stories provide a compelling way to present complicated technical subjects and that girls in particular respond to technology careers as a way to help others, the project is building a videogame called "Gram's House" in which social workers intend to move a fictional grandmother to a retirement home unless the player can outfit her home with sufficient technology for her to remain independent. Solving puzzles in the game requires learning core computer science concepts. Research studies will be conducted to determine whether the videogame is effective at getting girls interested in computer science, at teaching computer science concepts, and whether using stories makes videogames more effective for learning. This project based on an earlier successful prototype uses an iterative research-based design process including paper prototyping, playtesting, and focus groups (N=20) to create age appropriate activities, based on the CS Unplugged series, that support learning concepts from the Data, Internet, Algorithms, and Abstraction sections of the high-school level CS Principles curriculum. A quantitative, quasi-experimental design will be used to determine the overall effectiveness of teaching CS concepts under three types of game conditions: (a) games alone, (b) games with fictional settings, and (c) games with stories. A novel assessment instrument will be developed to assess content learning and qualitative observation using a standard observation protocol will be used to gauge interest and engagement. 70-80 middle school girls will be recruited for afterschool participation in the study in two states. As part of the dissemination efforts, a facilitator's guide, rule book, and materials such as maps and storyboards will be created and shared with the game. In addition, a workshop for computer science and other teachers who are interested in using games to teach CS concepts will be conducted.
This two year full scale development project builds on a proof of concept EAGER award. The EAGER award resulted in web-based summaries of peer reviewed STEM education research articles for ISE professionals. The project team will make field-requested adjustments to the Relating Research to Practice (RR2P) Web Resource for ISE Professionals; implement two workshops; and produce 200 briefs and 25-30 synthesis papers. The team members will work closely with CAISE regarding selection of research papers and topics of new synthesis papers. CAISE will make available the synthesis papers during convenings, forums, and other events. RR2P will help build capacity across the ISE field by bringing research to ISE educators, administrators, and others in an accessible manner as well as involving ISE practitioners in the process of selecting topics of interest for the briefs and papers and the manner in which content is disseminated. The project deliverables have potential for building capacity across the ISE field in terms of increasing awareness and understanding of research-based discoveries and increasing effectiveness of teaching and learning.
Northeastern University will design, test, and study GrACE, a procedurally generated puzzle game for teaching computer science to middle school students, in partnership with the Northeastern Center for STEM Education and the South End Technology Center. The Principal Investigators will study the effect of computer generated games on students' development of algorithmic and computational thinking skills and their change of perception about computer science through the game's gender-inclusive, minds-on, and collaborative learning environment. The teaching method has potential to significantly advance the state of the art in both game-based learning design and yield insights for gender-inclusive teaching and learning that could have broad impact on advancing the field of computer science education. Development and evaluation of GrACE will consist of two, year-long research phases, each with its own research question. The first, design and development, phase will focus on how to design a gender-inclusive, educational puzzle game that fosters algorithmic thinking and positive attitude change towards computer science. The content generator will be created using Answer Set Programming, a powerful approach that involves the declarative specification of the design space of the puzzles. The second phase will be an evaluation that studies, by means of a mixed-methods experimental design, the effectiveness of incorporating procedural content generation into an educational game, and specifically whether such a game strategy stimulates and improves minds-on, collaborative learning. Additionally, the project will explore two core issues in developing multiplayer, collaborative educational games targeted at middle school students: what typical face-to-face interactions foster collaborative learning, and what gender differences exist in how students play and learn from the game. The project will reach approximately 100 students in the Boston area, with long-term goals of reaching students worldwide, once the game has been tested with a local audience. Results of the project will yield a new educational puzzle game that can teach algorithmic thinking and effect attitude change regarding computer science. Through the process of creating a gender-inclusive game to teach computer science, it will provide guidelines for future educational game projects. Beyond these individual project deliverables, it will improve our understanding of the potential for procedural content generation to transform education, through its development of a new technique for generating game content based on supplying educational objectives.
DATE:
-
TEAM MEMBERS:
Northeastern UniversityGillian SmithCasper Harteveld
The National Science Teachers Association (NSTA), the Association of Science-Technology Centers (ASTC) and their research/evaluation partner, David Heil and Associates (DHA), will conduct front-end research to develop, pilot, and evaluate (formatively and summatively) a peer-reviewed journal and associated multi-media resources designed to catalyze innovative advances and learning across formal and informal science, technology, engineering, and mathematics (STEM) education communities. The goal is to identify content that is useful and appeals to the intersection of three target audiences: informal educators, formal educators and researchers conducting research at the intersection of in-school and out-of-school learning. This informal science education (ISE) "journal" would be a multi-media resource, available in both print and electronic forms, that could include videos or digital interactives and provide the potential for audience/reader feedback mechanisms, including input via social media. The publication proposed in this project has the potential to satisfy in part a key need identified in a Wellcome Trust study, Analysing the UK Science Education Community: The contribution of informal providers. The study report identifies the need to build an international depository of what has been and is being learned in ISE experiences at the boundary of in-school and out-of-school STEM learning - including syntheses of research, program evaluations, policy reports and illustrative cases studies. The proposed journal will also provide a vehicle to encourage and develop incentives for practitioners to publish results of their work. The project will use surveys, phone interviews and focus groups to conduct: 1) a landscape assessment, identifying what resources are already available to target audiences, how they are used, and what is missing; 2) front-end research with target audiences prior to publication of pilot issues, assessing interests, needs, and expectations and testing early topics, delivery formats, and discussion vehicles; and (3) formative and summative evaluation, assessing how well the (two-issue) pilot and associated social media vehicles foster synergy and satisfy the needs of the identified target audiences.
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE:
-
TEAM MEMBERS:
WGBH Educational FoundationPaula Apsell
An IMLS (Institute of Museum and Library Services) National Leadership project with University of California Museum of Paleontology (lead), Yale Peabody Museum of Natural History, Museum of the Earth and University of Kansas Natural History Museum to create a tree portal website with learning research, curriculum material and guides on how to effectively use and teach about the tree of life for teachers and museum professionals.
DATE:
-
TEAM MEMBERS:
University of California-BerkeleyTeresa MacDonaldRoy CaldwellAnna ThanukosLisa WhiteDavid HeiserRobert Ross