“Not a place for me” is often one of the main reasons people choose not to visit art museums.
Such perceptions of art museums call for institutions to create wider and more diverse entry points for visitors. At the Art Institute of Chicago—envisioned by our first president as a “museum of living thought”—we seek to continually expand art historical narratives by bringing together a plurality of perspectives and voices to processes of research, scientific and creative inquiry, and to increasingly varied modes of public engagement with art. To achieve these goals we developed a multifaceted
Historic art objects provide a collection of materials that have been naturally aged for decades or even centuries. In addition to the intrinsic archival value of these materials, they are also models for understanding property degradation over long periods of time. This project aims to develop computational and experimental tools needed to understand how these changes take place. To accomplish this task a research network has been established between Northwestern University and leaders in cultural heritage science from the Rijksmuseum and the University of Amsterdam in the Netherlands, the National Research Council in Italy, and the Synchrotron Soleil in France. This new infrastructure promises to deliver a significant enhancement of research and education resources (networks, partnership and increased access to facilities and instrumentation) to a diverse group of users. The art objects central to the project provide a series of well-defined case studies for investigating complex materials systems that are both applicable to materials education and push the limits of the existing analytical tools, thus inspiring instrumental innovations across broad sectors of the physical sciences. Further development of these tools will enable art conservators to more effectively make informed decisions about treatments of works of art, and to understand long-term materials degradation more generally. The project will also deliver a significant enhancement of research and education infrastructure by a diverse group of users and will provide meaningful, international research experience to 50 participants, with a strong emphasis on scientists at the beginning of their careers. In addition, the connections between science and art will illustrate the creative aspects of both disciplines to a very broad audience, attracting a more representative cross section of people into science.
DATE:
TEAM MEMBERS:
Kenneth ShullFrancesca CasadioOliver CossairtAggelos KatsaggelosMarc Walton
This poster was presented at the 2019 Association of Science-Technology Centers (ASTC) Annual Conference. It describes the Move2Learn project, which studies embodied interactions during science learning in order to articulate design principles about how museum exhibits can most effectively encourage cognitive and physical engagement with science.
This dissertation study investigates late-elementary and early-middle school field trips to a mathematics exhibition called Math Moves!. Developed by and currently installed at four science museums across the United States, Math Moves! is a suite of interactive technologies designed to engage visitors in open-ended explorations of ratio and proportion. Math Moves! exhibits emphasize embodied interaction and movement, through kinesthetic, multi-sensory, multi-party, and whole-body immersive experiences.
Many science museums and other informal-learning institutions offer exhibits and public
Until today museums have tried to identify and segment their audiences based on their demographics. After years of conducting research in the US, John Falk in 2009 introduced a descriptive and predictive framework for identifying visitors on the basis of their motivations, as related to identity. This article summarises Falk’s innovative framework as described in his book Identity and the Museum Visitor Experience (2009), in addition to his presentation at the Visitor Studies Conference at the Victoria and Albert Museum in January 2010. In addition the article draws on the author’s related
The Museum of Science, Boston (MOS or the Museum), in partnership with EdTogether and in collaboration with researchers and engineers across a range of affective science and technology disciplines, implemented a two-year exploratory research and development initiative titled Empowering Learners through Effective Emotional Engagement (ELEEE), with funding from the Argosy Foundation. Through the ELEEE project we sought to develop a framework for leveraging emotion in design where visitors are empowered to have meaningful, self- or socially-directed, and intrinsically motivated learning
Science museums, science centers, zoos, and aquariums (MCZAs) constitute major settings of science learning with unique characteristics of informal science education. Emphasis will be given to the analysis of four specific characteristics of MCZAs that seem relevant for educational research and practice, namely, conditions of mixed motives and goals, staged popular science, and impact of physical layout, as well as the role of social exchange and participation. By doing so, we focus on the consequences of these characteristics for the learning processes and outcomes of visits of MCZAs. We show
Informal STEM field trip programming is a large, yet under-researched area of the education landscape. Informal STEM education providers are often serving a more privileged section of society, leading to a risk of perpetuating inequalities seen throughout the education landscape. In an attempt to address the lack of research, this thesis explores the relationship between educational equity and informal STEM field trips. The intention was to collect data using a critical ethnography approach to the methods of qualitative questionnaire and interviews of informal STEM educators. A change in
This thesis investigates how people make meaning in and from museums, through encounters with artefacts which are mediated by portable digital technologies. It provides evidence that technology can help to manage the amount of information visitors encounter, instead of increasing it, through activities which structure the use of technology. One such activity - visitor-constructed trails through museums - is studied in depth, with attention to how (and to what extent) the activity is structured, the contexts in which it takes place, and how various tools and resources mediate and support the
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The project will develop and research an integrated package of high-quality, widely accessible media and other outreach materials designed to engage middle school youth, educators, and libraries in learning about viruses in relation to COVID-19. There is an immediate need to provide youth with accurate, engaging, and accessible materials to help them understand the basic biology underlying the COVID-19 pandemic, including the routes of COVID-19 transmission and mechanisms to prevent its spread. This is particularly important for those without science backgrounds or interests so that the rumors, hearsay, and gossip circulating among youth can be replaced with research-based information. Since 2007, the project team and partners have focused on developing and studying new ways of educating youth and the public about biology, virology, and infectious disease. The project will develop a web-accessible package of customizable graphics, illustrated stories, and essays--all of which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8. These resources will be disseminated broadly and at no cost to youth and educators of all kinds, including schools, libraries, museums, and other established networks for formal and informal science education. The project web package will be linked to multiple websites that serve as important educational resources on science and virology for youth, the general public, and educators. A prominent university press will publish and promote the illustrated stories and support distribution of 7,000 free copies.
The project will conduct research examining how richly-illustrated science narratives impact youth understanding of and curiosity about science. The research will help develop the foundation for better understanding how to educate youth about COVID-19 (and future pandemics) while generating new knowledge about effective methods for public science outreach during a major unanticipated natural event. For formative evaluation, the project will use an innovative rapid response feedback method. Youth will be invited to provide timely, specific comments on the serialized stories through a curated portal. As new excerpts are related online, different questions will be posed to youth who are selected because of specific characteristics (e.g., low or high initial science interest). These data will guide story development in real time and provide a mechanism to gauge the story appeal, comprehensibility, and initial impacts. The project will address two research questions: (1) How effective are illustrated stories in having positive impacts among participants on COVID-19 knowledge, science identity, attitudes, and interest in science careers?; and (2) How do story lines and characters have differential impacts on virus knowledge, epidemiology, and youth attitudes towards science and science careers? To conduct this research, the project will conduct online surveys using adapted items from prior research conducted by the project team. Additional items will assess COVID-19 knowledge, attitudes, personal experiences with the virus, well-being, and exposure to public health messaging about the virus. Research findings will be shared widely to inform the field about new ways delivering science education content during the advent of rapidly evolving global and educational challenges.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Judy DiamondJulia McQuillanPatricia Wonch HillElizabeth VanWormer
Meaningful science engagement beyond one-way outreach is needed to encourage science-based decision making. This pilot study aimed to instigate dialogue and deliberation concerning climate change and public health. Feedback from science café participants was used to design a panel-based museum exhibit that asked visitors to make action plans concerning such issues. Using intercept interviews and visitor comment card data, we found that visitors developed general or highly individualistic action plans to address these issues. Results suggest that employing participatory design methods when
This RAPID award is made by the AISL program in the Division of Research on Learning in the Directorate for Education and Human Resources, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. COVID-19 presents a national threat to the health of children and families, presenting serious implications for the mental and physical health of children. This project addresses two critical aspects of the impact on COVID-19 on families: (a) the large-scale shift to at-home learning based on nationwide school closures and (b) the critical need for families to understand the basic science of virus transmission and prevention. To address these needs, the project team will develop a series of STEM activities for families with children in grades K-6 that make use of items readily available in most households. The activities help children and their families learn about viruses, virus transmission, and virus prevention while also developing other STEM-skills, particularly related to engineering design. Importantly, the project team also considers the emotional well-being of children and families during the disruption of the COVID-19 pandemic. Led by researchers from Indiana University and Binghamton University, and experts in educational resource development from Science Friday (a non-profit organization dedicated to increasing the public's access to science and scientific information through podcasts, digital videos, original web articles, and educational resources for teachers and informal educators) the project is further supported by partnerships with the New York Hall of Science, Amazeum (AR), the Gulf of Maine Research Institute (ME), The Tech Museum of Innovation (CA), the Indiana State Museum, and Kopernik Observatory Science Center (NY). The activities will be shared with families through live-streamed web sessions that introduce the activity, give tips to adults for facilitation, share a bit on related STEM careers and engage the audience in dialog about the activity and their current experiences. Versions of the sessions that are recorded will be edited and include closed-captioning and subtitles in multiple languages before being posted on platforms such as YouTube.
This project uses a design-based research approach to investigate strategies for enabling families to actively engage with STEM while home and away from their traditional institutions during a period of crisis. The research components focus on:
Engagement: How do families engage in the activity tasks, in terms of processes, practices, and use of resources? Who participated, why did they choose to participate and how did they engage (including modification of activities)? What barriers prevented interested families from completing activities?
Impact: How did the activities change participants? feelings of: a) efficacy around STEM and b) connectedness/ isolation, during extended school closures?
The Activities: Which activities had the greatest uptake? How many activity ideas were submitted by those outside of the team? What was the age/content focus of each of these activities?
The researchers will analyze social media data (including data on resource downloads and use of tracked links, YouTube and Facebook views, comment threads during livestreams and Likes/Shares/Follows across social media sites) to refine and improve the activities and programming as well as learn about the ways families are engaging in the activities. The researchers will solicit survey responses from website visitors to gather more information on participants, why they participated, how they engaged and how the activities impacted participants? efficacy around STEM and their feelings of connectedness or isolation. The researchers will also ask participants to submit images, videos and text that describes what they are making and their process along the way. Analysis of this data would lead to insights on how children and families use STEM language and practices; how children and families ask questions and use COVID-19-related and other information as part of their design work; and how ideas are formed, shaped and refined as families engage in design and making. While the project focuses on a unique opportunity to collect data on family STEM engagement as families respond to disruptions from the COVID-19 pandemic, this project and its findings will provide a knowledge base that can be utilized to inform future responses to national emergencies, other work aimed at promoting family learning at home, and approaches to supporting children in open-ended problem solving.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.