Skip to main content

Community Repository Search Results

resource project Public Programs
There is a national need to expand opportunities to learn coding and computational thinking in informal science, technology, engineering, and mathematics (STEM) education. These skills are increasingly needed in STEM disciplines. As young people learn to code, they engage in computational thinking concepts and practices which are problem solving strategies that include repeated process (iterative) design skills. This project promotes innovation by designing and developing activities for tinkering spaces (a space filled with materials for hands-on exploration of STEM) combined with coding in informal learning organizations such as museums, and community centers. The project supports both tinkering and making as methods to meaningfully incorporate computational thinking in STEM learning experiences. The tinkering approach to learning is characterized by hands-on, trial and error engagement. Making is similar to tinkering with additional attention to learning with peer groups. The long-term goal of the project is to enable informal educators to engage in STEM programming with youth and families from underrepresented groups. The project brings together interdisciplinary teams from the Department of Information Science at the University of Colorado Boulder (CU Boulder), the Tinkering Studio at the Exploratorium, and the Lifelong Kindergarten research group at the Massachusetts Institution of Technology. In collaboration with local partner sites, the project team will design and disseminate a collection of six computational tinkering activity areas that engage learners in creative explorations using a combination of physical objects and computational code. The team will develop visual coding "microworlds" for each of the activity areas, specialized sets of coding blocks designed to provide scaffolding. Additionally, the project team will design and develop facilitation guides to document these activities and facilitation strategies, as well as workshops to better support facilitators in making and tinkering spaces.

The project enhances knowledge building through investigations of what instructional supports informal educators need to develop effective facilitation practices that engage underrepresented youth and families in STEM computational learning experiences. Study participants will include informal educators in museum, library, and community-based settings with varying backgrounds and experiences facilitating computing activities. The project team will also engage youth and families from underrepresented groups through collaborative efforts with community-based partners. Research questions include: 1) What challenges and barriers do informal learning educator, face to engage their learners in design-based activities with computing? 2) What supports informal learning educators to take on key facilitation practices that support children and families in computational tinkering activities? 3) In jointly engaging in these computational tinkering activities, how do the activities and informal learning educators? facilitation of these activities impact children's and families' development of computational tinkering and identities as creators and learners with computing? To answer these research questions the project will use qualitative ethnographic methods to study the developing interactions between learners and facilitators at three local sites. Comparative case studies of facilitators across the local partner sites will also be used to examine what supports facilitators to take on key facilitation practices. Data sources will include participant observation of facilitators and families, documentation in the form of photos, videos, and audio recordings, project artifacts, bi-monthly short surveys with reflective prompts, and interviews with facilitators and families.

This award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Professional Development, Conferences, and Networks
The impacts of changes in the climate at local and global levels threaten how people live. Some frontline communities, especially in historically disenfranchised and under-resourced areas, are particularly vulnerable to the devastating effects of climatological events such as wildfires, flooding, and urban heat islands. As such, there is an urgent need for collective, evidence-based understanding and engagement to prevent and prepare for these potentially fatal events. Led by the Oregon Museum of Science and Industry (OMSI) in Portland, Oregon, in collaboration with local and national partners, Youth Lead the Way is an early-stage Innovations in Development project that offers a theory-based approach for youth in climatologically vulnerable communities to work in climate science research alongside field researchers, develop leadership skills, and engage in timely conversations that impact their own communities. The project will develop and evaluate a Youth Advisory Research Board model to equip and support youth and informal STEM education institutions to conduct evidence-based research on local climate impacts and communicate the findings of their research to their communities. Youth Lead the Way advances the work of several previous NSF-funded projects on climate education, youth advisory boards, and collaborative networks to engage the public in informal STEM learning. Findings from this project will support ongoing efforts in the informal STEM education field to meaningfully engage youth and to more effectively communicate science related to climate and its impacts to the public.

During this initial two-year early-stage project, youth predominantly from racial and ethnic groups underrepresented in STEM will engage in a year-long extended STEM experience. These youth will work collaboratively with scientists and museum professionals to enhance their skills as climate researchers, science communicators, and educational leaders, while reaching an estimated 4,000 or more public audience members through research and events at OMSI, in their schools, and in their communities. Using a cohort model, the youth will conduct scientifically based research studies on various local climate impact topics while concurrently serving in an advisory role at the Oregon Museum of Science and Industry, where they will participate in shaping relevant museum programs and practices. The youth will also develop and present climate stories, a communication approach based on storytelling, to raise public understanding and awareness about local climatological changes and impacts. In addition to the youth component, a companion workshop will be held at the Sciencenter in Ithaca, New York, a partner organization, to train staff and formatively assess the feasibility of scaling the model in other museums. At the program level, an exploratory qualitative research study will be conducted to identify the factors of the overall model that contribute to desired outcomes of youth engagement, climate impact education, and informal science education professional development. Interviews, surveys, focus groups, group chats among youth cohort members, and reviews of artifacts generated by the youth will inform this exploratory study. A theory-based guide outlining key findings, considerations, and recommendations will also be produced. The dissemination of this work will be multi-tiered, reaching thousands within the target communities through public programs, professional networks, at conferences, and a live virtual professional development event hosted by the Association for Science-Technology Centers. If successful, Youth Lead the Way will lay the groundwork for a model that promotes youth and public engagement in STEM through climate science research and identifies promising pathways for future research and similar efforts well beyond this project.

This early-stage Innovations in Development project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Scott Randol Christopher Cardiel Rebecca Reilly Jennifer Schwade Imme Huttmann Carla Herran Marcie Benne Todd Shagott Maria Zybina
resource project Informal/Formal Connections
Parents and adult caregivers play a significant role in young children's understanding of (and participation in) science, technology, engineering, and mathematics (STEM). Research suggests that early engagement with STEM can have a profound impact on children's use of STEM process skills such as exploration, observation, and problem-solving, as well as future academic success. An immediate yet ongoing challenge facing informal STEM learning providers is to understand how limited resources can be used to support effective STEM learning opportunities and experiences for all children and families. Through a collaboration between researchers, Head Start, two science centers (one rural, one urban), and educators, this project aims to foster STEM access and engagement with specific attention to young children and their caregivers. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Pilot and Feasibility study will apply an experimental, mixed-methods design to examine parent/caregiver and child (ages 4-5) interactions before, during, and after informal STEM experiences to identify which factors influence children's transfer of learning STEM process skills across multiple informal contexts. Research results will lay the foundation for a future longitudinal study. The project team will ask: (1) What types of parent/caregiver-child engagement at the science center are most predictive of children's application of STEM process skills in subsequent problem-solving tasks and school readiness? (2) How do variations in parent/caregiver-child conversational strategies during the science center visit influence children's memory and learning? and (3) How can informal educators best support Head Start family engagement and children's emerging STEM knowledge? This study will collect data on 240, 4-5-year-old children, with their caregivers, in two different science centers that serve a largely rural and largely urban population. Data sources will include video/audio of caregiver-child interactions at the science centers and at home, as well as children's recall, engagement with a problem-solving task, and school readiness scores. Coding and analysis of the tasks during and after the science center visit will detail mechanisms underlying children's memory, learning, and application of STEM process skills that transfer to the problem-solving task. The project will be implemented by a research-practice partnership, leveraging the expertise of project partners and communities to ensure the use of culturally responsive research practices. This research has the potential to strategically impact how science centers and Head Start grantees work together on Family Engagement programming to achieve equitable STEM learning opportunities, broadening participation for low-income young children and their families.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michelle Kortenaar Jennifer Schwade Erin Jant Stacy Prinzing
resource project Public Programs
Exploratorium’s The Phenomenal Genome: Evolving Public Understanding of Genetics in the Post-Mendelian Era project addresses the increasing need to develop genomic literacy in the public at large. The explosion of genomics research over the past two decades has led to an increasingly complex picture of the determinants of human health and human phenotypes, and the applications of this research are now making their way into the clinic, the media, and the hands of consumers. The goal of this project is to create a model for increasing genomic literacy through Informal Science Education programming (ISE), creating a pathway for better decision making for the health of individuals and society at large. The Phenomenal Genome focuses on general science museum visitors and teachers of middle and high school students.

The core of the Exploratorium’s approach to science education is the creation of intriguing, provocative and investigable phenomena that are experienced directly and personally through exhibits, facilitated explorations, programs, and teacher professional development. Over two years, we will develop, test, and iterate inquiry-based professional development to help teachers develop understanding and integrate the principles of contemporary genomics and genetics into their classrooms. 120 middle and high school teachers will be served during this period, and many more beyond that, as the activities and workshops developed become a regular part of our teacher professional development programming. A learning scientist specializing in teacher learning will conduct research to determine which approaches and experiences are most effective for this context, and why.

In a parallel process, we will develop and test exhibits and experiences on the museum floor for museum visitors, using a similar iterative process of prototype testing with an embedded learning scientist to study visitor learning. We plan to define the approaches that work across audiences and contexts, as well as those that work best in particular contexts.

Through this work, we will develop new resources for teaching and learning contemporary genomics and genetics, and identify promising practices in communicating contemporary genomics and genetics in informal spaces across audiences. We will disseminate our findings via conferences, peer-reviewed articles, and workshops for the ISE community.
DATE: -
TEAM MEMBERS: Hilleary Osheroff Kristina Yu
resource project Public Programs
For nearly 20 years, the UAB Center for Community OutReach Development (CORD) has conducted SEPA funded research that has greatly enhanced the number of minority students entering the pipeline to college and biomedical careers, e.g., nearly all of CORD’s Summer Research Interns since 1998 (>300) have completed/are completing college and most of them are continuing on to graduate biomedical research and/or clinical training and careers. CORD’s programs that focused on high and middle school students have drawn many minority students into biomedical careers, but a low percentage of minority students benefit from these programs because far too many are already left behind academically in grades 4-6, due, at least in part, to a significant drop in science grades between grades 4 and 6, a drop from which most students never recover. A major contributor to this effect is that most grade 4-6 teachers in predominantly minority schools lack significant formal training in science and often are not fully aware of the great opportunities offered by biomedical careers.

In SEEC II, CORD will deliver intensive inquiry-based science training to grade 4-6 teachers, providing them with science content and hands-on science experiences that will afford their student both content and skills that will make them excited about, and competitive for, the advanced courses needed to move into biomedical research careers. SEEC II will also link teachers together across the elementary/middle school divide and bring the teachers together with administrators and parents, who will experience firsthand the excitement that inquiry learning brings and the significant advancement it provides in science and in reading and math. At monthly meetings and large annual celebrations, the parents, teachers and administrators will learn about the opportunities that biomedical careers can provide for the student who is well prepared. They will also consider the financial and educational steps required to ensure that students have the ability to reach these professions.

SEEC II will also expand CORD’s middle school LabWorks and Summer Science Camps to include grade 4-5 students and provide the teachers with professional learning in informal settings. During summer training, in small groups, the teachers will expand one of the inquiry-based science activities that they complete in the training, and they will use these in their classrooms and communicate with the others in their group to perfect these experiences in the school year. Finally, the teachers and grade 4-5 students will develop science and engineering fair-type research projects with which they will compete both on the school level and at the annual meeting. Thus, the students will share with their parents the excitement that science brings. The Intellectual Merit of SEEC II will be to test a model to enhance grade 4-6 teacher development and vertical alignment, providing science content, exposure to biomedical scientists and training in participatory science experiments, thus positioning teachers to succeed. The Broader Impacts will include the translation and testing of a science education model to assist minority students to avoid the middle school plunge and reach biomedical careers.
DATE: -
TEAM MEMBERS: J. Michael Weiss
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
Biology has become a powerful and revolutionary technology, uniquely poised to transform and propel innovation in the near future. The skills, tools, and implications of using living systems to engineer innovative solutions to human health and global challenges, however, are still largely foreign and inaccessible to the general public. The life sciences need new ways of effectively engaging diverse audiences in these complex and powerful fields. Bio-Tinkering Playground will leverage a longtime partnership between the Stanford University Department of Genetics and The Tech Museum of Innovation to explore and develop one such powerful new approach.

The objective of Bio-Tinkering Playground is to create and test a groundbreaking type of museum space: a DIY community biology lab and bio-makerspace, complete with a unique repertoire of hands-on experiences. We will tackle the challenge of developing both open-ended bio-making activities and more scaffolded ones that, together, start to do for biology, biotech, and living systems what today’s makerspaces have done for engineering.

A combined Design Challenge Learning, making, and tinkering approach was chosen because of its demonstrated effectiveness at fostering confidence, creative capacity, and problem solving skills as well as engaging participants of diverse backgrounds. This educational model can potentially better keep pace with the emerging and quickly evolving landscape of biotech to better prepare young people for STEM careers and build the next generation of biotech and biomedical innovators.

Experience development will be conducted using an iterative design process that incorporates prototyping and formative evaluation to land on a final cohort of novel, highly-vetted Bio-Tinkering Playground experience. In the end, the project will generate a wealth of resources and learnings to share with the broader science education field. Thus, the impacts of our foundational work can extend well beyond the walls of The Tech as we enable other educators and public institutions around the world to replicate our model for engagement with biology.
DATE: -
TEAM MEMBERS: Anja Scholze
resource project Public Programs
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.

Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jamie Donatuto Diana Rohlman Elise Krohn Valerie Segrest Rosalina James
resource project Public Programs
Research on how museum staff are trained continues to emerge. Training varies considerably across institutions and typically includes observations, shadowing, and trial and error. While museum educators put high value on increasing visitor-centered participatory experiences, engagement based on acquisition-based theories of learning is still common among floor staff, even after training. Facilitating learning about science, technology, engineering, and mathematics (STEM) topics in ways that support visitors in constructing their own understanding is difficult, especially since floor staff/facilitators may be working simultaneously with children and adults of a range of ages, backgrounds, and goals. This project will advance understanding of how to facilitate open-ended learning experiences in ways that engage visitors in practices that align with the STEM disciplines. The project will result in an evidence-based facilitation framework and training modules for training informal science educators. The work is grounded in constructivist theories of learning and identity work and focuses on visitors constructing understanding of STEM topics through active engagement in the practices of STEM. This model also results in learning experiences in informal settings that are mutually reinforcing with the goals of schools. This research is being conducted through an established researcher-practitioner partnership between MOXI, the Wolf Museum of Exploration + Innovation and the University of California at Santa Barbara (UCSB).

The two primary goals of the work are to (1) enable visitors to better engage in STEM practices (practice-based learning) and (2) investigate the role of training in helping facilitators develop the practice-based facilitation strategies needed to support visitors' learning. STEM content in this study is physical science. Prior work resulted in two tools that constitute part of a facilitation framework (a practices-by-engagement matrix and three facilitation pathways) which help educators identify appropriate goals based on how the visitor is engaging with exhibits. The development of the final tool in the framework, facilitation strategies, and the refinement of the first two tools will be done using a design-based implementation research (DBIR) approach. Data collection and analysis will be directed and completed by research-practitioner teams of UCSB graduate students (researchers) and MOXI educators (practitioners); MOXI educators will be both participants and researchers. Data collection activities include: video data using point-of-view cameras worn by visitors and educators; interviews of educators and visitors; observations of the training program; and educator reflections. In the final year, a small field test will be done at six sites, representing different types of museums. Interviews and reflections comprise the data collection at the field sites.


This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ron Skinner Danielle Harlow
resource project Informal/Formal Connections
Museums in the US receive approximately 55 million visits each year from students in school groups. Field trip visits to an art museum have been found to positively impact critical thinking skills, empathy and tolerance - an increase that can be even more significant for youth from rural or high-poverty regions. While field trips are popular, especially at science museums, there have been no experimental studies about their impact on STEM career choices and interests, much less any which used a culturally sensitive and responsive approach. Given the resources put into field trips, this study investigates if causal links can be drawn between museum experiences and impact on youth. The Museum of Science & Industry uses a Learning Labs approach for engaging its visitors. These "Learning Labs" are facilitated experiences that run roughly an hour. Currently there are 12 lab topics. This study focuses on MedLab--one of the learning labs--as the setting for the research. MedLab is designed for on-site and online experience using ultra-sophisticated and highly versatile technology in challenges taken from research on the top healthcare issues that face adolescents in their communities.

This study is informed by research and theory on Social Cognitive Career Theory (SCCT) and Racial and Ethnic Identity. The former describes a process many follow when thinking about career options, broadly. The latter describes how people see themselves in the world through their membership with a racial and/or ethnic group. Both processes can collectively influence STEM career choices. This study follows an embedded mixed-method design. The quantitative portion includes an experimental, pre/post/delayed post-test design of both educators and their students using multiple measures taken mostly from previously published instruments. The qualitative portion includes observation rubrics of MedLab sessions along with interviews and focus groups with staff, educators, students and families that take place both within and outside of the museum. This is an experimental study of moderate size of both heterogeneous teacher and student populations in real world settings. It involves comparing youth and educators that participate in MedLab with those who do not. By conducting research that looks at each community through the lens of their unique experiences, the research will measure their impact more sensitively and authentically, addressing a gap in current literature on informal science, technology, engineering, or mathematics (STEM) career education with diverse students.

This study is funded by the Advancing Informal STEM Learning (AISL) program and the Innovative Technology Experiences for Students and Teachers (ITEST) program.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Aaron Price Bernadette Sanchez Aerika Loyd Rex Babiera Nicole Kowrach
resource project Media and Technology
Families play a large role in igniting children's interest in science pathways, but they may not always have access to high-quality materials that demonstrate clear connections between science and their daily lives. This project will address this issue by developing high-interest materials that teach the science of food preparation to families with children ages 7-13. These materials include the following four components: (a) Food Labs, food-based investigations taking place in museums or in food service facilities; (b) take-home kits allowing families to conduct similar types of Food Labs at home; (c) a series of question starters called Promoting Interest and Engagement in Science (PIES) designed to facilitate meaningful family conversations around food preparation; and (d) a mobile app designed to deepen families' understandings of relevant science concepts and containing embedded measures of STEM learning. This project will advance knowledge regarding features of take-home materials that foster family science learning and ignite children's interest in science pathways.

This Innovations in Development Project will result in empirically-tested instructional materials that support families, with children ages 7-13, in conducting scientific investigations and holding scientific conversations related to food preparation. Kent State University, in partnership with The Cincinnati Museum Center and La Soupe, a food service provider for families who face food insecurity, will collaboratively develop and test the four interrelated sets of instructional materials mentioned above that are designed to deepen families' scientific content knowledge related to the chemistry of food preparation. To iteratively design and evaluate these materials, the team will conduct both laboratory and in-vivo experiments using a Solomon design with a pre- and post-demonstration survey. The survey will measure children's interest, knowledge, and engagement. For a month after interacting with instructional materials, families will document their science activity at home through the app. Additionally, through analyzing audio-recordings, the team will determine whether and how families ask questions using the PIES materials. Finally, post-demonstration interviews with participating families will focus on the usability and accessibility of the instructional materials. Quantitative and qualitative analyses of the pre-post surveys, interview transcripts, and audio-recordings will be used to improve the instructional materials, and the revised materials will be re-assessed using the same experimental methods and outcome measures. The final set of instructional materials will be developed and widely disseminated for easy use at other science museums, food service providers, and in families' homes. This project leverages partnerships to generate empirical knowledge on features of learning environments that support family science learning and engagement, resulting in empirically-based materials designed to broaden participation in science. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Bradley Morris John Dunlosky Whitney Owens
resource project Public Programs
This collaborative project will facilitate rural community education on climate impacts. The Carnegie Natural History Museum and the University of Pittsburgh will work together to form a network of interested community members in Mercer County and Powdermill Nature Reserve in western Pennsylvania to explore the impacts of climate and how its effect could be mitigated or accommodated. The project is has three related ideas: (1) museums hold valuable resources for understanding environmental change, (2) museums are not serving rural audiences well, and (3) complex socio-scientific environmental topics are deeply connected to social decision making in rural communities. This project will bring an inclusive approach to the discussion of socio-scientific issues in rural Western PA, through building relationships between local public audiences, STEM professionals, and informal learning specialists, creating opportunities for co-development of resources and building organizational capacity. The overarching goals of the project are to explore how museums can better serve rural stakeholders and increase the capacity for science-based conversations about human-caused climate impacts.

This project involves a cross-disciplinary team with Carnegie Museum of Natural History providing expertise in interpretation and ecological science, the University of Pittsburgh Center for Learning in Out of School Environments (UPCLOSE) providing expertise in learning research, and rural Hubs centered at Powdermill Nature Reserve (PNR) and the Mercer County Conservation District providing expertise in environmental education, conservation, and engagement with rural communities. The Hubs will coordinate professional development workshops, collaborative design sessions, and community gatherings to bring local stakeholders together to examine and adapt existing resources, including environmental science data and climate education tools, to local issues. These activities will be structured through a Research Practice Partnership. Each will have its own unique mix of geography, demographics, resources, and challenges.

The Research questions are: 1. How can the project effectively support the creation of socially safe spaces for rural Western PA communities to have science-based discussions around climate impacts? 2. How does work with rural partners influence the development of the museum's Center for Climate Studies and its mission to offer programs designed to support public engagement?

3. In what ways have museums been able to support learning about climate topics in rural communities? Data will be gathered from interviews and case studies. There will be two longitudinal studies of local network change and museum change. A survey will also be done to assess the impact of the project on the public. Protocols will be developed in collaboration with the Hubs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lauren Giarratani Nicole Heller Kevin Crowley