Living Liquid is a full-scale development project that will develop and research a new genre of science exhibit that engage visitors in inquiry with large scientific datasets through interactive visualizations. Building on findings from a prior pathways project, Living Liquid will develop three interactive visualizations on a multi-touch Viz Table with a tangible user interface. Each visualization will support visitors in the exploration of a dataset provided by the project’s science partners: 1) Plankton Patterns will show how the ocean is defined by regions of microscopic life using data from the MIT Darwin Project; 2) Ocean Tracks will reveal the “highways” large marine creatures travel with data from the TOPP project at Stanford University; and 3) Genetic Rhythms will follow the activity of marine creatures’ genes in response to environmental conditions based on data from the Center for Microbial Oceanography Research and Education (C-MORE). Through an iterative process of collaborative research and development among museum professionals, educational researchers, computer scientists, marine biologists, data artists and interaction designers, this project seeks to: (1) Advance public understanding of ocean ecosystems and large data inquiry skills through the development of a Viz Table. (2) Advance STEM professionals’ knowledge of how to engage the public in inquiry with visualizations through an educational research study. (3) Increase the capacity of STEM professionals (both ISE developers and research scientists) to develop visualizations through a collaborative development process that includes graduate student training and residencies.
This three-year research project will study the impact of science center staff facilitation strategies in the area of mathematics learning in a museum exhibit environment. The three main deliverables are: (1) Iteratively developing and refining a theoretical model of how staff facilitation can deepen and extend family mathematical discourse at interactive exhibits; (2) Rigorously testing key components of this model, including the relationship between staff facilitation and the nature of family mathematical discourse; and (3) Providing evidence and research-based tools to support PD efforts for informal STEM educators. The project will leverage the success of the NSF-funded Access Algebra project (DRL-0714634) to advance the field's understanding of socially mediated, informal math learning and identify effective, evidence-based facilitation approaches. The project's research will build from theoretical notion of sociomathematical norms (Yackel & Cobb, 1996), which is currently based on classroom research. A key element of the project will be to determine whether and how, the norms can be applied to informal learning environments. The first phase of the project begins with a qualitative, design-based research (DBR) study to develop a theoretical model of staff-facilitated family math learning, including staff facilitation strategies that support family mathematical discourse and contextual factors that influence that discourse. In the second phase of the project, the team will use an experimental approach to rigorously test the staff facilitation model developed during Phase 1. This mixed-method design will allow the team to both study the complexities of informal math learning and rigorously test causal connections between staff facilitation and the level of family math discourse. Finally, the project staff will provide tools to support PD efforts for informal STEM educators across the country.
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
This initiative is a collaboration of the University of Massachusetts Amherst, the EcoTarium science museum in Worcester, MA, other scientists and teachers at Clark University in Massachusetts and at Loyola Marymount University in Los Angeles, along with six other museums in New England and California. The project seeks to develop and study a model that would integrate the science research on urban systems into science museum exhibits and programs, starting in this phase in a new "City Science" exhibit space at the EcoTarium. The goal is to learn how to assist citizens in decision-making and shaping a sustainable future for their communities. The work builds on the NSF/SBS-funded Urban Long-term Research Area Exploratory (ULTRA-Ex) network, one of a set of awards by NSF/SBS and NSF/BIO in the area of urban ecology. The exhibit (with four sections: neighborhood design; land use and land cover; urban biodiversity; urban heat island effect) will include activities related to "alternative futures" of cities, will be designed to be updated as new results from this research are produced and also to allow for visitors to respond to survey questions about their city environment that will be used by the researchers. Deliverables will also include an integration of the prototype exhibits with an NSF-funded K-12 urban ecology curriculum (co-PI from Loyola Marymount University), which has already been done with nature centers and would now expand into science museums. The significance of this work includes the growing importance of new research on human/ecology interaction in cities coupled with applications of this research to Public Participation in Science Research (PPSR) and local decisions and choices. It is driven by the future vision of the cities in which the target audience(s) is located. The work in Worcester will focus on reaching underserved audiences, which characterizes much of the city of Worcester, and will include partnerships with local schools and community groups.
DATE:
-
TEAM MEMBERS:
Robert RyanEric StraussColin PolskyAlexander GoldowskyPaige WarrenBetsy Loring
This research project led by the Exploratorium will use a combination of tracking and timing, cluster analysis, and focus groups to seek to answer the research question: To what extent and in what ways do female-responsive designs more effectively engage girls at STEM exhibits? This project addresses the need for more research in this area by pioneering the study of potential female-responsive design (FRD) principles for exhibits across a wide variety of STEM topics and exhibit types. This project includes four phases that will build from the work of the PI that developed an initial Female-Responsive Design (FRD) Framework regarding female engagement and learning in STEM -- based on extensive literature review and practitioner interviews. This project will expand on and validate this FRD Framework, with the ultimate goal of having a set of criteria for female-responsive designs (FRD) that effectively engage girls at STEM exhibits. The four phases of the research project are: Phase 1: Track 1000 boys and girls across three institutions using over 300 physics, engineering, and math exhibits to identify which exhibits engage boys and girls equally, and which are less engaging for girls. Phase 2: A panel of experts and girl advisors identify additional female-responsive design principles, expanding on those identified to date in literature and practice. Phase 3: Combining results from the first two phases, the third phase employs statistical analyses to reveal the most effective combinations of design principles for engaging girls across a variety of exhibits. Phase 4: This qualitative phase conducts focus groups with girls to explore how the final FRD Framework works to better engage them, and how their learning differs at exhibits that exemplify the principles in the Framework.
The Exploratorium, in partnership with Qualcomm, proposes to develop and test a highly accurate indoor positioning system (IPS) at full museum scale. Such a system would increase the feasibility and power of whole-visit research studies and open up opportunities for using IPS to support new and innovative informal STEM learning experiences. Within 3-5 years, museums will likely possess infrastructures capable of easily and effectively integrating IPS. The Exploratorium's project will generate early knowledge about using this technology for developing innovative programmatic strategies and for improving research and evaluation of STEM learning in museums. Program activities include developing processes for creating and updating indoor maps; testing IPS as a tool for program development and delivery; prototyping a research data management system; and the dissemination project findings.
This research and development project would inform and engage audiences (especially middle school age girls) about the fundamental research under investigation at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. A research plan and summative evaluation will fill a gap in what is known about the public's perception and understanding of the LHC/particle physics and include studies on girl's interest and engagement. Deliverables include a 40 minute giant screen film (3D/2D), full dome planetarium film, an interactive theater lobby exhibit, website, mobile app, materials and professional development workshops for educators. The giant screen film will use scientific visualizations and artistic interpretation to reveal compelling scientific stories recreating conditions following the Big Bang and the discovery in 2012 of the Higgs boson. CERN is providing unprecedented access to the collider and particle detectors including filming inside the 17 mile long underground tunnel while it is closed for upgrades in 2013-2014. There are 8 partner science museums (7 with planetariums) that will show the film/exhibit and serve as sites for research, evaluation, and outreach to underserved audiences ( Adventure Science Center, Carnegie Science Center, The Franklin Institute, Liberty Science Center, OMSI, Orlando Science Center, the Smithsonian, and the St. Louis Science Center). Additional distribution/marketing channels include giant screen theaters, planetariums, DVD, and social social media. Launch is targeted for 2016. Learning outcomes will focus on increasing awareness and interest in the LHC and increasing young people's engagement and excitement about the nature of scientific discovery. The research on girl's engagement and interest in physics will fill a gap in field. The project deliverables are projected to reach large audiences through national distribution of the giant screen film, the planetarium show, the exhibit, 3D/2D Blu Ray and DVDs, and access on computers, tablets, and other mobile devices.
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
CENTC's (Center for Enabling New Technologies Through Catalysis) outreach is focused on partnerships with science centers. Initially we worked with the Pacific Science Center (PSC) to train our students in effective communication of science concepts to public audiences. Later we developed a short-term exhibit, Chemist - Catalysts for Change in the Portal to Current Research space. As part of the CCI/AISL partnership program, we partnered with Liberty Science Center to create an activity on a multi-touch media table, "Molecule Magic." We are currently developing another exhibit with PSC.
Boston's Museum of Science (MOS), with Harvard as its university research partner, is extending, disseminating, and further evaluating their NSF-funded (DRL-0714706) Living Laboratory model of informal cognitive science education. In this model, early-childhood researchers have both conducted research in the MOS Discovery Center for young children and interacted with visitors during the museum's operating hours about what their research is finding about child development and cognition. Several methods of interacting with adult visitors were designed and evaluated, including the use of "research toys" as exhibits and interpretation materials. Summative evaluation of the original work indicated positive outcomes on all targeted audiences - adults with young children, museum educators, and researchers. The project is now broadening the implementation of the model by establishing three additional museum Hub Sites, each with university partners - Maryland Science Center (with Johns Hopkins), Madison Children's Museum (with University of Wisconsin, Madison), and Oregon Museum of Science and Industry (with Lewis & Clark College). The audiences continue to include researchers (including graduate and undergraduate students); museum educators; and adults with children visiting the museums. Deliverables consist of: (1) establishment of the Living Lab model at the Hub sites and continued improvement of the MOS site, (2) a virtual Hub portal for the four sites and others around the country, (3) tool-kit resources for both museums and scientists, and (4) professional symposia at all sites. Intended outcomes are: (1) improve museum educators' and museum visiting adults' understanding of cognitive/developmental psychology and research and its application to raising their children, (2) improve researchers' ability to communicate with the public and to conduct their research at the museums, and (3) increase interest in, knowledge about, and application of this model throughout the museum community and grow a network of such collaborations.
In this full-scale research and development project, Oregon State University (OSU), Oregon Sea Grant (OSG) and the Hatfield Marine Science Center Visitors Center (HMSCVC) is designing, developing, implementing, researching and evaluating a cyberlaboratory in a museum setting. The cyberlaboratory will provide three earth and marine science learning experiences with research and evaluation interwoven with visitor experiences. The research platform will focus on: 1) a climate change exhibit that will enable research on identity, values and opinion; 2) a wave tank exhibit that will enable research on group dynamics and problem solving in interactive engineering challenges; and 3) remote sensing exhibits that will enable research on visitor interactions through the use of real data and simulations. This project will provide the informal science educaton community with a suite of tools to evaluate learning experiences with emerging technologies using an iterative process. The team will also make available to the informal science community their answers to the following research questions: For the climate change exhibit, "To what extent does customizing content delivery based on real-time visitor input promote learning?" For the wave tank exhibit, "To what extent do opportunities to reflect on and share experiences promote STEM reasoning processes at a build-and-test exhibit?" For the data-sensing exhibit, "Can visitors' abilities to explain or use visualizations be improved by shaping their visual searches of images?" Mixed-methods using interviews, surveys, behavioral instruments, and participant observations will be used to evaluate the overall program. Approximately 60-100 informal science education professionals will discuss and test the viability of the exhibit's evaluation tools. More than 150,000 visitors, along with community members and local middle and high school students, will have the opportunity to participate in the learning experiences at the HMSCVC. This work contributes to the fields of cyberlearning and informal science education. This project provides the informal science education field with important knowledge about learning, customized content delivery and evaluation tools that are used in informal science settings.
The Seeing Scientifically project will research a new way of supporting museum visitor experiences so they can have authentic scientific observation of live microscopic specimens. By adapting existing computational imaging techniques from current biological research, the project aims to encourage and support visitors in observing scientifically, that is, in asking productive questions, interpreting image-rich information, and making inferences from visual evidence that increasingly characterizes current biological research. The scaffolding (e.g., visual cues or information supporting learning) will consist of a system of virtual guides and prompts that are responsive to what visitors see. The scaffolding prompts will be overlaid on a real time, high-density image of a live sample that the visitor is investigating with a research grade microscope. Project research will contribute early knowledge on ways to scaffold informal learners in the practice of authentic scientific observation with the complex, dynamic visual evidence that scientists themselves see using the equipment and techniques they use. Project research and resources will be widely disseminated to learning science researchers, informal science practitioners, and other interested audiences through publications, conference presentations and sharing of resources via the NSF-supported informalscience.org website and other relevant websites. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will prototype an innovative microscope exhibit that scaffolds visitors in scientific observation of live specimens and their biological processes. The overarching hypothesis is that scientific observation of real-time visual phenomena can deeply engage learners with the content, tools and practices of modern science, which increasingly rely on image-based data. Through three rounds of iterative prototype development and evaluation, the project will generate early findings for the following related questions: (1) what are promising ways of scaffolding observation of live specimens at an unmediated exhibit; (2) How can computational imaging techniques be integrated into a microscope exhibit to engage and scaffold learners to ask productive questions, interpret what they see, and make evidence-based inferences from complex, dynamic images. Data will be collected and analyzed by coding think-aloud interviews with visitors concerning their interest in and description of the biological phenomenon observed; coding of think aloud transcripts of visitor questions types and answers, relevant features noted, inferences and scaffold use; and statistical comparison of holding time, questions asked, answers, inferences, and scaffold use. Project findings will seed more rigorous research on the combination of scaffolding and computational imaging techniques effective for supporting scientific observation in image-rich areas of science.