This project had three objectives to build knowledge with respect to advancing Informal STEM Education:
Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.
Linked to these objectives were three project goals:
Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]
The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.
Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.
Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.
Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE:
-
TEAM MEMBERS:
Deb DunkhaseKristen MissallBenjamin DeVane
Roots of Wisdom (also known as Generations of Knowledge; NSF-DRL #1010559) is a project funded by the National Science Foundation that aims to engage Native and non-Native youth (ages 11-14) and their families in Traditional Ecological Knowledge (TEK) and western science within culturally relevant contexts that present both worldviews as valuable, complementary ways of knowing, understanding, and caring for the natural world. The Oregon Museum of Science and Industry (OMSI) and its partner organizations, The Indigenous Education Institute (IEI), The National Museum of the American Indian (NMAI
The Wild Center will partner with Adirondack Museum, Cornell’s Maple Program, and New York State/Northeastern New York Maple Producers Associations to build regional identity, revitalize a heritage industry, and connect people to nature through the art, story, history, and science of maple sugaring. The Northern New York Maple Project will create interpretative exhibits with ecological, historical, and economic information. The museum will develop an instructional maple sugaring video; a touch-screen story kiosk that lets visitors share stories through the exhibit and social media; a storytelling workshop for staff, project partners, and maple producers; community events and conferences; a school education program; community sugaring workshops; and educational materials, website, social media, and outreach to industry, food enthusiasts, and the business community. Regular planning meetings on goals and deliverables will track results and an outside consultant will evaluate the overall success of the project.
Luckily enough, more democracy is always called for. Even in countries that can truly be described as democratic. And democracy (which is a constant reference in these pages) is increasingly related to knowledge, be it about whether growing GMOs, starting nuclear energy production or allowing the choice of a child’s gender through IVF techniques. The need to make democratic decisions on controversial issues, which increasingly imply scientific and technological knowledge, comes from the bottom, as citizens voice – sometimes even vehemently – the desire to express themselves.
The educational function of science museums was born with the first naturalistic collections ever, flourished in 16th-century Italy. The pedagogic thought and the educational experimentations carried out in approximately five century of history have allowed the educational mission of museums to acquire many different facets, drawing a task having an increasingly higher and complex social value. Recent publications explore these new meanings of an old role.
A review of two books recently published by Vieira & Lent, by the Casa da Ciência (House of Science) and by the Oswaldo Cruz Museu da Vida (Life Museum, Cruz/Fiocruz), "O Pequeno Cientista Amador – a divulgação científica e o público infantil", and "Terra Incógnita – a interface entre ciência e público" ("The Young Amateur Scientist - scientific divulgation and the youthful public", and "Unknown Land – the interface between science and the public") is presented.
While the model for transmitting scientific information a model that attributes the effects of a message on the public to the intent of the communicator mediated by text is increasingly becoming an exclusive tool for communication novices, other alternative models are emerging and most importantly field research is being tested and examined.
Providence Children’s Museum was tasked with examining how children demonstrate their learning and thinking through their play at the museum, and how exhibit activities and resources can be designed to build awareness of these learning processes among children’s caregivers and museum educators. The project team created a set of resources, including an exhibit space called Mind Lab, a Circuit Block activity, and an Observation Tool for caregivers that highlighted different types of behaviors associated with learning that happens naturally while children play. Rockman et al conducted a summative
This commentary seeks to spark further discussion on the continuing professional development in science communication, presenting comments from practitioners who were asked to reflect on the competences and skills their profession requires, and to envisage what kind of training might provide them. This introduction presents some common issues that emerge within the comments: the necessity to face rapidly evolving professional landscapes, to answer to new missions and roles, to consider the growing impact and potential of new technologies. Alternative training methods are also discussed.
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
The letter compares and contrasts thinking about making science accessible and relevant to children in science centres and museums with thinking about communication in social history museums.
This study aims to investigate whether different types of museum visits have specific ways to influence the visitors' experience and learning. Three types of museum visits as offered by the Museo della Scienza e della Tecnologia "Leonardo da Vinci" in Milan, Italy were taken into consideration: free tour, guided tour, and lab. The study involved visitors over 25 years of age. The way visits took place, the visitors' learning and experiences were investigated based on evidence collected using methods such as Personal Meaning Mapping and observation. Our study has revealed that the outcomes of