STEM learning ecosystems harness contributions of educators, policymakers, families, businesses, informal science institutions, after-school and summer providers, higher education, and many others towards a comprehensive vision of STEM learning for all children. This paper offers evidence of the impact of cross-sector partnerships on young people, and a logic model template for communities so they may further develop the attributes, strategies, and measures of progress that enable them to advance opportunities for all young people to succeed. Further research will help us expand the promise
Scientific literacy is an important educational and societal goal. Measuring scientific literacy, however, has been problematic because there is no consensus regarding the meaning of scientific literacy. Most definitions focus on the content and processes of major science disciplines, ignoring social factors and citizens’ needs. The authors developed a definition of scientific literacy for the California 4-H Program from the citizen’s perspective, concentrating on real-world science-related situations. The definition includes four anchor points: science content; scientific reasoning skills
To date, no national studies of science-focused out-of-school time (OST) programs have been implemented, making it difficult to get a sense of program diversity and characteristics. In this paper, Laursen, Thiry, Archie, and Crane map the national landscape of U.S. OST science, technology, and engineering programs. The findings allow the authors to describe a generalized profile for each of eight types of OST program providers.
The University of Minnesota Extension (UME) contracted Garibay Group to conduct a summative evaluation of the Driven to Discover program (often referred to as D2D by youth participants and adult leaders) to assess how adult leaders in Informal Science Education (ISE) settings used the curriculum and citizen science projects as conduits to engage youth in scientific inquiry.
This report describes an evaluation of two educational programs that Iridescent offered with a grant from the National Science Foundation. These two programs were developed for youth and their families and were organized around open-ended Engineering Design Challenges. These are hands-on problem-solving activities supported by a web-based platform known as the Curiosity Machine. The Curiosity Machine and the Design Challenges were designed to work together to engage learners in fundamental physics and engineering concepts in fun and open-ended ways, while enhancing their curiosity, creativity
This evaluation reports on the Mission: Solar System project, a 2-year project funded by NASA. The goal of the Mission: Solar System was to create a collection of resources that integrates digital media with hands-on science and engineering activities to support kids’ exploration in formal and informal education settings. Our goal in creating the resources were: For youth: (1) Provide opportunities to use science, technology, engineering, and math to solve challenges related to exploring our solar system, (2) Build and hone critical thinking, problem-solving, and design process skills, (3)
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
This Science Learning+ project will develop research-and-practice activities to explore how an integrated art, STEM, and society (what we refer to as STEAM) approach can expand science engagement and learning of youth aged 15-19, from low-income and non-dominant cultural communities. The project will review current knowledge, practice, and trends related to underrepresented youth, STEAM, and science engagement. The review will be used to develop: (1) A cross-setting research framework for investigating the relationship between informal STEAM learning experiences and young people's developing engagement with science. (2) Design principles for out-of-school STEAM programs that have proven effective in cultivating youth engagement with science and making relevant cross-setting connections. (3) Practitioner-friendly program evaluation tools that integrate findings from current research and practice related to cross-setting science learning of young adults especially non-dominant youth as it relates to STEAM learning experiences.
This project is a full-scale development project that builds upon a pilot program funded by the NSF in 2007 (LEAP into Science/Pilot), developed by The Franklin Institute (FI) in collaboration with The Free Library of Philadelphia. By connecting children’s literature and hands-on science activities in out-of-school settings, LEAP/Pilot has promoted student and family engagement in science and literacy in Philadelphia for over six years. In 2011, a cohort of ten national sites joined the initiative to pilot LEAP into Science resources in multiple out-of-school time contexts and within unique institutional partnerships. The 10 sites, consisting of 27 institutional partnerships representing a diverse group of organizations (museums, libraries, K-12 school districts, universities, and public media). Through continued collaboration in Philadelphia and with these national cohort sites, LEAP into Science: Engaging Diverse Community Partners in Science and Literacy is leveraging the relationships, experiences, and resources initiated in LEAP /Pilot to address the needs of new audiences, meet partners’ requests for enhanced professional development, and study the efficacy of this program in different out-of-school time structures and populations across the country. The result will be an adaptable program that more effectively reaches diverse audiences in science and literacy through community partners, as well as a stronger understanding of implementation for improved sustainability.
WaterBotics is the underwater robotics curriculum and program that is being disseminated to four regions through a National Science Foundation grant, in collaboration with national and state partners. Its goal is to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. The curriculum, which can be used either in traditional classroom settings or in after-school and summer-camp situations, is problem-based, requiring teams of students to work together to design, build, test, and redesign underwater robots, or “bots” made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges.
DATE:
-
TEAM MEMBERS:
Stevens Institute of TechnologyMercedes McKayPatricia Holahan
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
Girlstart will implement a comprehensive suite of informal STEM education programs that directly reach 2,500 4th-8th grade girls and their parents. This project will increase interest in and understanding of STEM disciplines by inspiring and engaging girls and their parents; it will establish linkages between formal and informal STEM education; and it will stimulate parents to support girls’ STEM learning endeavors by becoming informed proponents for high-quality STEM education. Over the course of 48 months—from fall 2012 to fall 2016—Girlstart seeks to develop new, robust, NASA-rich curriculum for its nationally-replicated Girlstart Summer Camp program, as well as year-long curriculum for its recognized Girlstart After School program. Curricula will be prepared for a range of ages and abilities and include links to electives, higher education majors, and careers. Girlstart will also conduct public and community STEM education programs throughout the region in NASA content areas. In addition, Girlstart will develop relevant, hands-on exhibits at the Girlstart STEM Center in Austin, Texas. Through this project, Girlstart will: (1) Increase facility and mastery in STEM skills. (2) Increase participants’ interest in pursuing STEM subjects and careers. (3) Increase participants’ understanding and mastery of the scientific method and the engineering design process as systems for problem solving and scientific discovery. (4) Increase participants’ understanding that there are multiple applications of STEM in everyday life. (5) Increase participants’ understanding of higher education as key to expanding career options. (6) Increase participants’ confidence and interest in conducting STEM activities. (7) Increase participants’ awareness of STEM careers.