What is the relationship between experiences in informal settings and students’ understanding of and attitudes toward science? By analysing existing data sets, Suter finds that science museum attendance has an effect—albeit a small one—on student achievement.
This Barron and Bell article provides a foundational overview for how “cross-setting learning” can equitably engage all youth across formal and informal educational contexts. The paper offers: 1) a review of research; 2) descriptions of supports and challenges to cross-setting learning, including learner interest and identity; and 3) suggestions for research and assessments that capture learning for underrepresented youth.
This Stocklmayer, Rennie, and Gilbert article outlines current challenges in preparing youth to go into science careers and to be scientifically literate citizens. The authors suggest creating partnerships between informal and formal education to address these challenges in school.
This cooperative effort among Purdue University, public schools in Indiana, and The Children's Museum of Indianapolis aims to develop, evaluate and disseminate educational programs for K-12 students, parents, teachers and the public about the science involved in keeping people healthy. Obesity prevention, cancer prevention and asthma will be emphasized. Fitness programs, research programs using animal models, K-12 outreach programs, professional development workshops and recruiting efforts will be networked to fill gaps in health science education, interest schoolchildren in health science research and improve public health. This project will develop and rigorously assess curricular modules for grades three, six and nine. The science behind health advances, the clinical trials process and the role of animals in developing drugs and medical devices will be addressed. In addition, the project will engage schoolchildren in becoming health science researchers by providing them with role models. Researchers will interact with K-12 students during classroom visits, camps and after-school programs. Finally, the project will involve and engage children, parents and the public in educational fitness activities and programs. Dogs will be incorporated into fitness programs as exercise companions. The program includes an interactive traveling exhibit, highlighting the science involved in keeping people healthy.
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) is conducting regional STEM workshops, entitled NFB STEM2U, for blind youth [youth], grades 3 – 6. During this first regional workshop in Baltimore, the NFB operated three different programs simultaneously: one program for youth, a second program for their parents/caregivers, and a third program for a group of teachers who work with visually impaired students. A fourth program, for Port Discovery museum staff, was conducted earlier to prepare the museum staff to assist with the youth program
Although informal learning environments have been studied extensively, ours is one of the first studies to quantitatively assess the impact of learning in botanical gardens on students' cognitive achievement. We observed a group of 10th graders participating in a one-day educational intervention on climate change implemented in a botanical garden. The students completed multiple-choice questionnaires in a pre-post-retention test design. Comparing the test scores revealed a significant short-term knowledge gain as well as a long-term knowledge gain. Consequently, our results show the potentials
This summative evaluation of the University of Washington Botany Greenhouse K-12 Education Outreach Program analyzed the contents of 468 thank-you notes written by program participants using the National Science Foundation’s Framework for Evaluating Impacts of Informal Science Education Projects. Strong evidence was found for impacts in three STEM learning categories: Awareness, Knowledge or Understanding, Engagement or Interest, and Skills.
Working in collaboration with biomedical researchers from universities in the San Francisco area, across the nation, and abroad, the Exploratorium proposes to develop a high-quality microscopic imaging station for use by museum visitors, students, teachers and Internet visitors. This facility will utilize the highest quality optics and state-of-the-art microscopic techniques including biological staining and sophisticated digital recording. A variety of living specimens fundamental to basic biology, human development, the human genome and health-related research will be displayed. The station will be the lively center of the life sciences' area at the Exploratorium, providing educational content, dramatic imagery and regular demonstrations to reach an audience which ranges from the mildly curious to research scientists. In addition, the Exploratorium will be the first public institution, outside of a few research laboratories, to present live microscopic specimens via video and the Internet in real time. (To date, remote microscopes have generally presented inanimate objects or fixed tissue.) In order to increase student accessibility, subject matter for the imaging station will be integrated into the ongoing middle and high school teacher professional development at the museum. Teachers will be able to use the imaging station to conduct their own experiments, develop classroom explorations, take away images, access the website in their classrooms, or share materials with other teachers.
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
To effectively address problems in education, research must be shaped around a problem of practice. Reorienting research and development in this way must overcome three obstacles. First, the incentive system for university researchers must be changed to reward research on problems of practice. Second, the contexts must be created that will allow the complexity of problems of practice to be understood and addressed by interdisciplinary teams of researchers, practitioners, and education designers. And third, meaningful experimentation must become acceptable in school systems in order to develop
The digital revolution has transformed how young people discover and pursue their interests; how they communicate with and learn from other people; and how they encounter and learn about the world around them. How can we identify best practices for incorporating new media technologies into learning environments in a way that resonates with youth, including their interests, goals, and the ways they use technology in their everyday lives? How do we resolve the need to document and recognize informal STEM learning and connect it to formal education contexts? What strategies can be developed for inspiring and tracking student progress towards the learning goals outlined in the Next Generation Science Standards (NGSS)? These questions are the underlying motivation for this CAREER program of research. Digital badges represent a specific kind of networked technology and have been touted as an alternative credentialing system for recognizing and rewarding learning across domains, both inside and outside of formal education contexts. While there is considerable enthusiasm and speculation around the use of digital badges, the extent to which they succeed at empowering learners and connecting their learning across contexts remains largely untested. This project seeks to fill this gap in knowledge. The approach taken for this program of study is a three phased design-based research effort that will be focused on four objectives: (1) identifying design principles and support structures needed to develop and implement a digital badge system that recognizes informal STEM learning; (2) documenting the opportunities and challenges associated with building a digital badge ecosystem that connects informal learning contexts to formal education and employment opportunities; (3) determining whether and how digital badges support learners' STEM identities; and (4) determining whether and how digital badges help learners to connect their informal STEM learning to formal education and employment opportunities. In Phase 1, an existing prototype created in prior work at Seattle's Pacific Science Center will be developed into a fully functional digital badge system. In Phase 2, the PI will also work collaboratively with higher education stakeholders to establish formal mechanisms for recognizing Pacific Science Center badges in higher education contexts. In Phase 3, the badge ecosystem will be expanded and students' use of and engagement with badges will be tracked as they apply to and enter college. The project involves high school students participating in the Discovery Corps program at the Pacific Science Center, undergraduate and graduate students at the University of Washington, and stakeholders in the K-12 and higher education community in Seattle. Educational activities integrated with this program of research will support: (1) mentoring University of Washington students throughout the project to develop their skills as practice-oriented researchers; (2) incorporating the research processes and findings from the project into university courses aimed at developing students' understanding of the opportunities and challenges associated with using new media technologies to support learning; and (3) using the research findings to develop educational outreach initiatives to support other informal STEM learning institutions in their use of digital badges.
LIGO's Science Education Center is in charge of Education and Public Outreach Component for the LIGO Livingston Observatory. The three prime efforts are: (1) Professional development for teachers utilizing lab facilities and cross-institute collaborations. (2) Outreach to students K-16 (targeting 5- 9th grade), with on-site field trips to the LIGO Lab and Science Education Center, as well as off-site visits & presentations. (3) Outreach to the general public and community groups with on-site tours and Science Education Center Experience, as well as off=site visits and presentations. LIGO's Science Education Center is located at the LIGO Observatory, and has an auditorium, a classroom and a 5000 square foot exhibit hall with interactive exhibits at its disposal to complete its mission. In addition LIGO-SEC staff serve to help press and documentary film makers complete their missions in telling the "LIGO story" and encouraging budding scientists.