Painting with Natural Selection is an interactive installation that uses evolution and scientific experimentation to create an artistic experience. Painting is the second phase of a larger art and science project that explores the relationship between evolution and reproduction. Phase I was building custom software that simulates virtual organisms growing, reproducing and evolving - Evorepro. Evorepro was funded by a Science Education Partnership Award led by Dr. John A. Pollock at Duquesne University. Painting was funded by a Spark Award from the Sprout Fund. In Painting, kids influence the evolution of simulated bacteria by changing their virtual environment. The experience allows kids to get creative right away as they develop an intuitive understanding of the ebb and flow of evolutionary processes. The virtual organisms respond and evolve in real-time creating a visceral connection between the individual and their impact in the virtual world that leads to an awareness of our footprint in our real world and wonder at life's adaptability.
DATE:
-
TEAM MEMBERS:
Carnegie-Mellon UniversityJoana Ricou
These audio presentation and transcript files are from a series of webinars about the NSF Advancing Informal STEM Learning (AISL) FY14 solicitation. "AISL Webinar 101: Introduction to the Solicitation" includes an overview of the AISL program, project types, preparing competitive proposals, the review process and NSF merit criteria, other relevant programs and resources, and contact information. "AISL Webinar 102: Digging Deeper into the Solicitation" focuses on key issues in the submission and review processes, examples of project types, an introduction to the Common Guidelines for Education
DATE:
TEAM MEMBERS:
National Science FoundationNational Science Foundation
This report was completed by the Program Evaluation Research Group at Endicott College in October 2013. It describes the outcomes and impacts of a four-year, NSF-funded project called Go Botany: Integrated Tools to Advance Botanical Learning (grant number 0840186). Go Botany focuses on fostering increased interest in and knowledge of botany among youth and adults in New England. This was being done through the creation of an online flora for the region, along with the development of related tools, including PlantShare, and a user-friendly interface for ‘smartphones’. In January 2012, the PI
DATE:
TEAM MEMBERS:
Judah LeblangNew England Wild Flower Society
This paper examines hypothesized outcomes of informal science learning experiences and analyzes the methods used to assess those outcomes. The authors deconstruct several studies on informal science learning to identify strengths and weaknesses and examine the potential of new approaches to informal learning.
Living Liquid is a full-scale development project that will develop and research a new genre of science exhibit that engage visitors in inquiry with large scientific datasets through interactive visualizations. Building on findings from a prior pathways project, Living Liquid will develop three interactive visualizations on a multi-touch Viz Table with a tangible user interface. Each visualization will support visitors in the exploration of a dataset provided by the project’s science partners: 1) Plankton Patterns will show how the ocean is defined by regions of microscopic life using data from the MIT Darwin Project; 2) Ocean Tracks will reveal the “highways” large marine creatures travel with data from the TOPP project at Stanford University; and 3) Genetic Rhythms will follow the activity of marine creatures’ genes in response to environmental conditions based on data from the Center for Microbial Oceanography Research and Education (C-MORE). Through an iterative process of collaborative research and development among museum professionals, educational researchers, computer scientists, marine biologists, data artists and interaction designers, this project seeks to: (1) Advance public understanding of ocean ecosystems and large data inquiry skills through the development of a Viz Table. (2) Advance STEM professionals’ knowledge of how to engage the public in inquiry with visualizations through an educational research study. (3) Increase the capacity of STEM professionals (both ISE developers and research scientists) to develop visualizations through a collaborative development process that includes graduate student training and residencies.
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
The Exploratorium, in partnership with Qualcomm, proposes to develop and test a highly accurate indoor positioning system (IPS) at full museum scale. Such a system would increase the feasibility and power of whole-visit research studies and open up opportunities for using IPS to support new and innovative informal STEM learning experiences. Within 3-5 years, museums will likely possess infrastructures capable of easily and effectively integrating IPS. The Exploratorium's project will generate early knowledge about using this technology for developing innovative programmatic strategies and for improving research and evaluation of STEM learning in museums. Program activities include developing processes for creating and updating indoor maps; testing IPS as a tool for program development and delivery; prototyping a research data management system; and the dissemination project findings.
This research and development project would inform and engage audiences (especially middle school age girls) about the fundamental research under investigation at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. A research plan and summative evaluation will fill a gap in what is known about the public's perception and understanding of the LHC/particle physics and include studies on girl's interest and engagement. Deliverables include a 40 minute giant screen film (3D/2D), full dome planetarium film, an interactive theater lobby exhibit, website, mobile app, materials and professional development workshops for educators. The giant screen film will use scientific visualizations and artistic interpretation to reveal compelling scientific stories recreating conditions following the Big Bang and the discovery in 2012 of the Higgs boson. CERN is providing unprecedented access to the collider and particle detectors including filming inside the 17 mile long underground tunnel while it is closed for upgrades in 2013-2014. There are 8 partner science museums (7 with planetariums) that will show the film/exhibit and serve as sites for research, evaluation, and outreach to underserved audiences ( Adventure Science Center, Carnegie Science Center, The Franklin Institute, Liberty Science Center, OMSI, Orlando Science Center, the Smithsonian, and the St. Louis Science Center). Additional distribution/marketing channels include giant screen theaters, planetariums, DVD, and social social media. Launch is targeted for 2016. Learning outcomes will focus on increasing awareness and interest in the LHC and increasing young people's engagement and excitement about the nature of scientific discovery. The research on girl's engagement and interest in physics will fill a gap in field. The project deliverables are projected to reach large audiences through national distribution of the giant screen film, the planetarium show, the exhibit, 3D/2D Blu Ray and DVDs, and access on computers, tablets, and other mobile devices.
Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California. Project partners include the Rueben H. Fleet Science Center and the University of California, San Diego (UCSD). The project's goals are to support teachers in the development of informal science education opportunities for English learners, partner with students in grades 7-12 to create activities and exhibits, deliver student-produced products to community members, and sustain and disseminate the activities through the development of web-based teacher tools. The teachers will work with informal science education experts, STEM professionals, and undergraduate students to develop and implement the program lessons with their 7-12 grade students. The activities and exhibits designed for community audiences will be used in the Imperial Valley Discovery Zone, slated for completion in fall 2013. Special emphasis will be placed on understanding English scientific word frames and science content specific vocabulary to help ELL students express complex scientific concepts in English. The project deliverables in this pilot project include a comprehensive teacher professional development strategy, student-developed informal science activities and exhibits, a project website, and multiple teacher resources (lesson plans, how-to guides, training materials, and social networking tools). Teachers will receive 45 hours of professional development during the summer with an additional 20 hours of support provided during the school year. UCSD's Jacob's School of Engineering will provide training on solar energy micro-grids using a micro-grid observatory to be located in Imperial Valley. English language development training will be provided by the University of California's Professional Development Institute (UCPDI) and address the role of language objectives in scientific conceptual knowledge and language development; using science and language to improve classroom questioning/discussion; and teaching academic language to English learners. The informal science education component of the training provided by the Fleet Science Center will address topics such as questioning strategies, scientific reasoning frameworks, communicating science to public audiences, and learning "high level" science content using hands-on approaches. The project design builds on research which supports an active learning approach that mirrors scientific practice and is one of the strengths of informal science learning environments. The question to be addressed by the USA Project is: "Can informal STEM activities with embedded English Language development strategies assist English learner students to increase their English language competency and their interest in STEM subjects?" The PI seeks to identify the impact that teachers have on guiding students in inquiry-based informal STEM education, evaluate the academic outcomes for students, and measure changes in community interest, understanding, and attitudes towards STEM and STEM occupations. The USA Project is designed to reach approximately 200 underserved students and will promote the participation of at least 400 additional students, parents, and other rural community members. It is anticipated that this project will result in the development of a model for teacher-led informal STEM education, increased STEM learning opportunities for the community, and the development of a network of educational institutions that helps to bridge formal and informal STEM learning and learning environments.
This article is a review of the statistics program SigmaStat 2.03. It is an easy-to-use program, particularly useful for formative and remedial work where one may be doing a number of different tests of labels, interactive displays, orientation materials, and/or short exit surveys.
In this article, Christine L. Brandenburg, of Rice University's Center for Technology in Teaching and Learning, discusses her research of the use of computer technology in children's museums. Bradenburg focuses on the research methods used to address how and why visitors use computer technology in children's museums. The first section of the article presents the research methods, placing them in the context of the naturalistic inquiry design of the research. The second section discusses the research methods with respect to visitor studies and to studies of computer technology in museums.
In this essay, researchers from King's College London, Work, Interaction and Technology Research Group, discuss a particular approach to the analysis of social interaction in museums and galleries, focusing on video-based field studies. The authors also give a few suggestions as to why it might be important to take verbal and physical interactions more seriously when designing, developing and evaluating exhibits and exhibitions.
DATE:
TEAM MEMBERS:
Dirk vom LehnChristian HeathJon Hindmarsh