Integrating science, technology, engineering, and mathematics (STEM) subjects in pre-college settings is seen as critical in providing opportunities for children to develop knowledge, skills, and interests in these subjects and the associated critical thinking skills. More recently computational thinking (CT) has been called out as an equally important topic to emphasize among pre-college students. The authors of this paper began an integrated STEM+CT project three years ago to explore integrating these subjects through a science center exhibit and a curriculum for 5-8 year old students. We
DATE:
TEAM MEMBERS:
Morgan HynesMonica CardellaTamara MooreSean BrophySenay PurzerKristina TankMuhsin MeneskeIbrahim YeterHoda Ehsan
Computational Thinking (CT) is an often overlooked, but important, aspect of engineering thinking. This connection can be seen in Wing’s definition of CT, which includes a combination of mathematical and engineering thinking required to solve problems. While previous studies have shown that children are capable of engaging in multiple CT competencies, research has yet to explore the role that parents play in promoting these competencies in their children. In this study, we are taking a unique approach by investigating the role that a homeschool mother played in her child’s engagement in CT
Given the growth of technology in the 21st century and the growing demands for computer science skills, computational thinking has been increasingly included in K-12 STEM (Science, Technology, Engineering and Mathematics) education. Computational thinking (CT) is relevant to integrated STEM and has many common practices with other STEM disciplines. Previous studies have shown synergies between CT and engineering learning. In addition, many researchers believe that the more children are exposed to CT learning experiences, the stronger their programming abilities will be. As programming is a
In November 2016, within an Environmental studies course at the University of Venice, students carried out an experiment aimed at collecting scenarios of the Venetian coast's future starting from lessons learnt during the episode of storm surge 50 years ago (Aqua Granda ‘flood’). The students built scenarios able to anticipate the effect of sea level rise on coastal areas in Venice, based not only on scientific input but also on a methodology called “Futurescape city Tours” (FCT) involving inhabitants of the barrier islands of Lido and Pellestrina. This paper will explore three main questions
DATE:
TEAM MEMBERS:
Alba L’AstorinaAlessia GhezziStefano GuerzoniEmanuela Molinaroli
Environmental Pedagogies and Practice is divided into four sections: changing environmental pedagogies, teaching practices, examples of transformative approaches and a toolkit of lesson plans. While the book focuses on environmental communication, the chapters offer insights that are also relevant in a range of science communication contexts.
We explored the potential of science to facilitate social inclusion with teenagers who had interrupted their studies before the terms set for compulsory education. The project was carried out from 2014 to 2018 within SISSA (International School for Advanced Studies), a scientific and higher education institution in physics, mathematics and neurosciences, and was focused on the production of video games using Scratch. The outcomes are encouraging: through active engagement, the participants have succeeded in completing complex projects, taking responsibilities and interacting with people
DATE:
TEAM MEMBERS:
Simona CerratoFrancesca RizzatoLucia TealdiElena Canel
This case study of the development of a cross-cultural museum exhibition illustrates value and difficulties of cross-cultural collaboration. University researchers worked with a class of postgraduate science communication students and designers from the Otago Museum to produce a museum exhibition. ‘Wai ora, Mauri ora’ (‘Healthy environments, Healthy people’) provided visibility and public access to information about Māori work. The exhibition assignment provided an authentic assessment of student work, with a professional output. Working on the exhibition involved cross-cultural communication
A study in South Africa shed light on a set of factors, specific to this country, that compel South African scientists towards public engagement. It highlights the importance of history, politics, culture and socio-economic conditions in influencing scientists' willingness to engage with lay audiences. These factors have largely been overlooked in studies of scientists' public communication behaviours.
Children’s storybooks are a ubiquitous learning resource, and one with huge potential to support STEM learning. They also continue to be a primary way that children learn about the world and engage in conversations with family members, even as the use of other media and technology increases. Especially before children learn to read, storybooks create the context for in-depth learning conversations with parents and other adults, which are the central drivers of STEM learning and development more broadly at this age. Although there is a body of literature highlighting the benefits of storybooks
Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.
The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
Engineering is a critical yet understudied topic in early childhood. Previous research has shown that even young children can engage in (versions of) engineering design practices and processes that are similar to those of adult engineers and designers. In this session, we will share and discuss current research projects to explore how different in-school and out-of-school contexts and activities support 3- to 8-year-old children as they engage in engineering design. We will consider ways that the different characteristics of the activities and spaces, as well as the practices of teachers
Hispanic youths have traditionally been marginalized from participation in STEM careers, though efforts have been made to increase diversity in STEM careers through targeted learning interventions for these students. However, these efforts often do not purposefully address STEM identity formation, which is a construct closely related to career choice in STEM. Building on previous work that highlights the value of “science talk”, we focus on the childhood experiences of Hispanic/Latine college students that have informed the construction of their STEM identity and contributed to their decisions