Skip to main content

Community Repository Search Results

resource research Public Programs
The purpose of this paper is to explore and discuss the role of practical work in the teaching and learning of science at school level. It emphasizes practical work as a means for students to learn about the nature of science.
DATE:
TEAM MEMBERS: Robin Millar
resource research Public Programs
Reports from the NSF, NRC, AAAS, and others urge over and over that we must teach "science as science is done," that "science is a way of knowing," that our goal should be to impart "scientific habits of mind," and that learning must be learner-centered and oriented toward process. Fine. But what does this really mean for science education, and especially laboratory education?
DATE:
TEAM MEMBERS: Jane Maienschein
resource research Public Programs
The purpose of this paper is to examine the role of laboratory-based science from a perspective that synthesizes developments in (1) science studies, e.g., history, philosophy and sociology of science and (2) the learning sciences, e.g., cognitive science, philosophy of mind, educational psychology, social psychology, computer sciences, linguistics, and (3) educational research focusing on the design of learning environments that promote dynamic assessments. Taken together these three domains have reshaped our thinking about the role inquiry, and in turn the laboratory, has in science
DATE:
TEAM MEMBERS: Richard Duschl
resource research Public Programs
This paper explores the role of laboratory and field-based research experiences in secondary science education by summarizing research documenting how such activities promote science learning. Classroom and field-based "lab work" is conceptualized as central components of broader scientific investigations of the natural world conducted by students. Considerations are given to nature of professional scientific practice, the personal relevance of student's understanding of the nature of empirical scientific research, and the role of technology to support learning. Drawing upon classroom learning
DATE:
TEAM MEMBERS: Philip Bell
resource research Public Programs
The goal of this article is to provide an integrative review of research that has been conducted on the development of children's scientific reasoning. Scientific reasoning (SR), broadly defined, includes the thinking skills involved in inquiry, experimentation, evidence evaluation, inference and argumentation that are done in the service of conceptual change or scientific understanding. Therefore, the focus is on the thinking and reasoning skills that support the formation and modification of concepts and theories about the natural and social world. Major empirical findings are discussed
DATE:
TEAM MEMBERS: Corrie Zimmerman
resource research Informal/Formal Connections
This paper will review literature on learning science in K-8 classrooms by asking and answering three major questions: Who learns science in classrooms? How is science learned in classrooms? What science is learned in classrooms? These questions will be addressed from a sociocultural perspective, which means that the unit of analysis (both theoretically and methodologically) should include both the individual and the social world. Thus, the proposed connections between causes and outcomes must include contextual as well as psychological factors.
DATE:
TEAM MEMBERS: Ellice Forman Wendy Sink
resource research Public Programs
The purpose of this paper is to review what is known about informal science learning and to recommend areas for further research. The review is intended to support an examination of how children's science learning experiences in designed informal environments like science museums and zoos relate to science learning activities in K-8 schools.
DATE:
TEAM MEMBERS: Kirsten Ellenbogen Reed Stevens
resource research Informal/Formal Connections
To begin, this paper describes the climate in science education in the United States, and describes and defines formative assessment. Next, Black & Wiliam’s review and two other important empirical studies will be summarized. Then, a framework characterizing different forms of formative assessment is presented. Non-empirical studies are organized according to this continuum. Finally, the paper describes limitations in the implementation of formative assessment in K-8 science, and summarizes assessment practices that show promise for improving student learning. The important contribution of the
DATE:
TEAM MEMBERS: Erin Furtak
resource research Media and Technology
In 2006, the National Research Council initiated a study on Learning Science in Informal Environments. The purpose of the study is to synthesize a range of relevant literatures and recommend strategic directions for future research in the area. In the course of working on this study the Committee has found one of its challenges to be the identification and assessment of evaluation studies of informal science programs, in particular those which have probed science learning outcomes. To that end they commissioned the Institute for Learning Innovation to produce a paper that would help them
DATE:
TEAM MEMBERS: Institute for Learning Innovation
resource research Media and Technology
This paper lays out a theory of (re-)generative learning to explain how families and communities socialize young learners into thinking like scientists and mathematicians. Cultural communities and their families orient their young in varied ways toward the language, behaviors, and self-theories about the future presupposed in the learning of science and mathematics. Certain socialization processes and norms correspond closely with those that scientists and artists use in laboratories, studios, and rehearsals. Certain norms of politeness and patterns of language differ significantly from habits
DATE:
TEAM MEMBERS: Shirley Heath
resource research Public Programs
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers
DATE:
TEAM MEMBERS: National Research Council Margaret Honey Greg Pearson Heidi Schweingruber
resource research Public Programs
STEM learning ecosystems harness unique contributions of educators, policymakers, families, and others in symbiosis toward a comprehensive vision of science, technology, engineering, and math (STEM) education for all children. This paper describes the attributes and strategies of 15 leading ecosystem efforts throughout the country with the hope that others may use their lessons to deepen rich STEM learning for many more of America’s children.
DATE:
TEAM MEMBERS: Noyce Foundation Kathleen Traphagen Saskia Traill