RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE:
-
TEAM MEMBERS:
resourceresearchMuseum and Science Center Exhibits
In 2022, Kera Collective partnered with Made By Us to evaluate the impact of its flagship program, Civic Season, in its second year running. Held annually between Juneteenth and July 4th, Civic Season “rolls out the welcome mat” for Young People—the future inheritors of the United States—by connecting them to 150+ museums, historic sites, and historical societies and putting history in their hands as a tool for informed, inspired civic participation.
Our work, and Civic Season’s implementation, came at a time when the gap between Young People (age 18-30) and history organizations was huge
The Westchester Children’s Museum will develop Full STEAM (Science, Technology, Engineering, Art, and Math) Ahead, an integrated, module-based sequence of hands-on STEAM workshops adaptable for both in-person and virtual teaching for high-need 2nd to 6th grade students at Thomas Cornell Academy in Yonkers, NY and Waterside School in Stamford, CT. Project activities include program development, preparation, delivery, and evaluation to create programs that are replicable and sustainable while leveraging the museum’s resources to demonstrate how it can support their communities in need during unprecedented times. Full STEAM Ahead anticipates reaching 300 students from low-income and economically disadvantaged families.
The Harvard Museums of Science and Culture will improve the ability of middle school teachers to use museum-based digital resources to support classroom instruction aligned with state and national science standards. Working with advisory teachers from five collaborating school districts, the museum will co-create classroom activities, based on digital resources from its collections, along with associated teacher professional development programs at three sites across urban and rural Massachusetts. The project will provide schools with access to classroom-ready resources that successfully support student learning. Teachers will learn how to use these materials, integrate them into their teaching, and enhance their skills to teach science content and practice. External evaluators will assess the project's effectiveness by measuring teacher implementation of the digital resources in the classroom, requests for information and assistance, and changes in teachers' confidence and comfort levels.
The National Building Museum (NBM) contracted RK&A, Inc. to conduct a summative evaluation of the Why Engineering? distance learning program. The goal of the evaluation was to assess program operations and explore the extent to which the program achieved its intended outcomes for students and teachers.
How did we approach this study?
RK&A used three methodologies for the study: online program observations; student assessments administered immediately after the program; and telephone interviews with teachers. Observations were primarily used to gain a holistic understanding of how the
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This project examines the conditions in which families and young learners most benefit from "doing science and math" together among a population that is typically underserved with respect to STEM experiences--families experiencing poverty. This project builds on an existing program called Teaching Together that uses interactive parent-child workshops led by a museum educator and focused on supporting STEM learning at home. The goal of these workshops is to increase parents'/caregivers' self-perception and ability to serve as their child's first teacher by supporting learning and inquiry conversations during daily routines and informal STEM activities. Families attend a series of afternoon and evening workshops at their child's preschool center and at a local children's museum. Parents/Caregivers may participate in online home learning activities and museum experiences. The project uses an experimental design to test the added value of providing incremental supports for informal STEM learning. The study uses an experimental design to address potential barriers parents/caregivers may perceive to doing informal STEM activities with their child. The project also explores how the quantity and quality parent-child informal learning interactions may relate to changes in children's science and mathematics knowledge during the pre-kindergarten year. The project partners include the Children's Learning Institute at the University of Texas Health Science Center at Houston and the Children's Museum of Houston.
The project is designed to increase understanding of how parents/caregivers can be encouraged to support informal STEM learning by experimentally manipulating key aspects of the broader expectancy-value-cost motivation theory, which is well established in psychology and education literatures but has not been applied to preschool parent-child informal STEM learning. More specifically, the intervention conditions are designed to identify how specific parent supports can mitigate potential barriers that families experiencing poverty face. These intervention conditions include: modeling of informal STEM learning during workshops to address skills and knowledge barriers; materials to address difficulties accessing science and math resources; and incentives as a way to address parental time pressures and/or costs and thereby improve involvement in informal learning activities. Intervention effects will be calculated in terms of effect sizes and potential mediators of change will be explored with structural equation modeling. The first phase of the project uses an iterative process to refine the curriculum and expand the collection of resources designed for families of 3- to 5-year-olds. The second phase uses an experimental study of the STEM program to examine conditions that maximize participation and effectiveness of family learning programs. In all, 360 families will be randomly assigned to four conditions: 1) business-as-usual control; 2) the Teaching Together core workshop-based program; 3) Teaching Together workshops + provision of inquiry-based STEM activity kits for the home; and 4) Teaching Together workshop + activity kits + provision of monetary incentives for parents/caregivers when they document informal STEM learning experiences with their child. The interventions will occur in English and Spanish. A cost analysis across the interventions will also be conducted. This study uses quantitative and qualitative approaches. Data sources include parent surveys and interviews, conversation analysis of home learning activities, parent photo documentation of informal learning activities, and standardized assessments of children's growth in mathematics, science, and vocabulary knowledge.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project, conducted by the University of Pittsburgh and the University of California, Berkeley, seeks to discover what makes middle school students engaged in science, technology, engineering, and mathematics (STEM). The researchers have developed a concept known as science learning activation, including dispositions, practices, and knowledge leading to successful STEM learning and engagement. The project is intended to develop and validate a method of measuring science learning activation.
The first stage of the project involves developing the questions to measure science activation, with up to 300 8th graders participating. The second stage is a 16-month longitudinal study of approximately 500 6th and 8th graders, examining how science learning activation changes over time. The key question is what are the influencers on science activation, e.g., student background, classroom activities, and outside activities.
This project addresses important past research showing that middle school interest in STEM is predictive of actually completing a STEM degree, suggesting that experiences in middle school and even earlier may be crucial to developing interest in STEM. This research goes beyond past work to find out what are the factors leading to STEM interest in middle school.
This work helps the Education and Human Resources directorate, and the Division of Research on Learning, pursue the mission of supporting STEM education research. In particular, this project focuses on improving STEM learning, as well as broadening participation in STEM education and ultimately the STEM workforce.
As a leader in the science museum field, the New York Hall of Science (NYSCI) is a destination for hands-on, interactive exhibitions and innovative programs. NYSCI’s Design-Make-Play (DMP) pedagogical approach to STEM learning recognizes that what is essential is not only the content—what is being taught—but how teaching and learning are imagined through the curriculum. This commitment to practice builds off of interest-based learning research, which emphasizes that all learners should feel a sense of efficacy and possibility. The hallmarks of this approach include deep personal engagement
DATE:
TEAM MEMBERS:
Amanda SolarshGina TesorieroMichaela LabrioleTara Chudoba
Abstract
In 2011, Donna DiBartolomeo and Zachary Clark enrolled in the Arts in Education Program at Harvard Graduate School of Education. Harvard Graduate School of Education is home to Project Zero, an educational research group comprising multiple, independently funded projects examining creativity, ethics, understanding, and other aspects of learning and its processes. Under the guidance of Principal Investigator Howard Gardner and Project Manager Katie Davis, the authors were tasked with developing a methodology capable of observing finegrained, objective detail in complete works of
Roots of Wisdom (also known as Generations of Knowledge; NSF-DRL #1010559) is a project funded by the National Science Foundation that aims to engage Native and non-Native youth (ages 11-14) and their families in Traditional Ecological Knowledge (TEK) and western science within culturally relevant contexts that present both worldviews as valuable, complementary ways of knowing, understanding, and caring for the natural world. The Oregon Museum of Science and Industry (OMSI) and its partner organizations, The Indigenous Education Institute (IEI), The National Museum of the American Indian (NMAI
“Dialogue” is the trendy word of the moment. The word “dialogue” can be found in the call to access European funding, in the works of Science Communication scholars, in presentations of science education projects, in the mission of new science centres. “Dialogue” is also a word reported by mass media regarding politicians' and scientists' speeches on general issues as well as on local or specific problems such as environment, health, energy, etc... This new magic word is frequently repeated and opens many doors (or perhaps it simply helps to make a good impression). However, there is the risk