This article develops an argument that the type of intervention research most useful for improving science teaching and learning and leading to scalable interventions includes both research to develop and gather evidence of the efficacy of innovations and a different kind of research, design-based implementation research (DBIR). DBIR in education focuses on what is required to bring interventions and knowledge about learning to all students, wherever they might engage in science learning. This research focuses on implementation, both in the development and initial testing of interventions and
SciGirls CONNECT is a broad national outreach effort to encourage educators, both formal and informal, to adopt new, research-based strategies to engage girls in STEM. SciGirls (pbskids.org/scigirls) is an Emmy award-winning television program and outreach program that draws on cutting-edge research about what engages girls in science, technology, engineering and math (STEM) learning and careers. The PBS television show, kids' website, and educational outreach program have reached over 14 million girls, educators, and families, making it the most widely accessed girls' STEM program available nationally. SciGirls' videos, interactive website and hands-on activities work together to address a singular but powerful goal: to inspire, enable, and maximize STEM learning and participation for all girls, with an eye toward future STEM careers. The goal of SciGirls is to change how millions of girls think about STEM. SciGirls CONNECT (scigirlsconnect.org) includes 60 partner organizations located in schools, museums, community organizations and universities who host SciGirls clubs, camps and afterschool programs for girls. This number is intended grow to over 100 by the end of the project in 2016. SciGirls CONNECT provides mini-grants, leader training and educational resources to partner organizations. Each partner training session involves educators from a score of regional educational institutions. To date, over 700 educators have received training from over 250 affiliated organizations. The SciGirls CONNECT network is a supportive community of dedicated educators who provide the spark, the excitement and the promise of a new generation of women in STEM careers. Through our partner, the National Girls Collaborative Project, we have networked educational organizations hosting SciGirls programs with dozens of female role models from a variety of STEM fields. The SciGirls CONNECT website hosts monthly webinars, a quarterly newsletter, gender equity resources, SciGirls videos and hands-on activities. SciGirls also promotes the television, website and outreach program to thousands of elementary and middle school girls and their teachers both locally and nationally at various events.
The authors argue that schools should be communities where students learn to learn. In this setting teachers should be models of intentional learning and self-motivated scholarship, both individual and collaborative (Brown, 1992; Brown & Campione, 1990; Scardamalia & Bereiter, 1991). If successful, graduates of such communities would be prepared as lifelong learners who have learned how to learn in many domains. The authors aim to produce a breed of "intelligent novices"(Brown, Bransford, Ferrara, & Campione, 1983), students who, although they may not possess the background knowledge needed in
DATE:
TEAM MEMBERS:
Gavriel SalomonAnn BrownDoris AshMartha RutherfordKathryn NakagawaAnn GordonJoseph Campione
This paper outlines findings from a 1990 survey conducted by the American Association of Zoological Parks and Aquariums (AAZPA), specifically related to the prevalence and value of teacher training programs at accredited AAZPA institutions.
This document, released in September 2013, grew out of a Joint Committee of the U.S. Department of Education (ED) and the National Science Foundation (NSF) that was convened to establish cross-agency guidelines for improving the quality, coherence, and pace of knowledge development in STEM education. In this report, the Joint Committee 1) defines the types of ED- and NSF-funded research that relates to the development and testing of interventions and strategies designed to increase learning, and 2) specifies how the types of research relate to one another, and describe the theoretical and
DATE:
TEAM MEMBERS:
National Science FoundationU.S. Department of Education
In this article, Janette Griffin of the University of Technology in Sydney discusses a project designed to investigate the applicability of a School-Museum Learning Framework piloted in an earlier study. Implementation of the Framework involved 5th and 6th grade students bringing their own chosen questions or "areas of inquiry" to the museum and students having considerable control over their learning within parameters provided by the teacher.
The Office for Human Research Protections (OHRP) provides a decision chart as a guide for institutional review boards (IRBs), investigators, and others who decide if an activity is research involving human subjects that must be reviewed by an IRB under the requirements of the U.S. Department of Health and Human Services (HHS) regulations at 45 CFR part 46. OHRP welcomes comment on these decision charts. The charts address decisions on the following: whether an activity is research that must be reviewed by an IRB, whether the review may be performed by expedited procedures, and whether informed
DATE:
TEAM MEMBERS:
U.S. Department of Health & Human Services
Project LIFTOFF works with local, regional, and national partners to engineer statewide systems for Informal Science Education that inspire: YOUTH to pursue STEM education and careers through increased opportunities for quality, hands-on STEM learning. AFTERSCHOOL STAFF to facilitate STEM learning experiences that contribute to the overall STEM education and aspirations of youth in their programs. PROGRAM ADMINISTRATORS to encourage and support staff in the integration of STEM enrichment into the daily programming. STATE LEADERS to sustain and expand afterschool learning opportunities so that all students have access to engaging STEM experiences outside of the regular school day. Project LIFTOFF is dedicated to the development of the following essential elements of statewide systems for informal science education:
Access to appropriate STEM Curriculum for youth of all ages, abilities, and socio-cultural backgrounds that meets the needs and interests of individual community programs
Systematic STEM Professional Development that matches individual skills in positive youth development with abilities to facilitate discovery and science learning
A diverse Cadres of Trainers who will deliver the professional development, technical assistance and curriculum dissemination in their local communities
Authentic Evaluation of informal science efforts that determine the impacts on youth aspirations and the capacity of youth programs to provide quality STEM experiences
Local STEM education leadership to identify the ways in which collaborative education efforts can advance the development of 21st Century Skills and the preparedness for STEM workforce and higher education
Partnerships in support of youth development and informal science education that convene local, regional, and statewide organizations and stakeholders
To advance national initiatives and states' sySTEM engineering efforts, LIFTOFF coordinates an annual convening, the Midwest Afterschool Science Academy, that brings together national informal science experts, system leaders and youth development professionals to elevate the levels of science after school. The 5th MASA will be in the spring of 2014 in Kansas City, MO
DATE:
TEAM MEMBERS:
Missouri AfterSchool NetworkJeff Buehler
We are a non-profit, open access journal dedicated to publishing high quality scientific research articles from high school students. Our mission is to promote the advancement of high school education by displaying the research conducted by students across the country and the schools in which their research was performed. Our journal is developing a blog in which students can conduct peer review of each other's articles and teachers can exchange ideas on how to improve their programs. Schools with advanced science curriculum can contribute ideas and curriculum to schools with less developed programs, thus increasing the overall quality of science education in this program. We are requesting members of the Informal Science community, whose programs involve laboratory research, to submit articles to our journal.
DATE:
TEAM MEMBERS:
Ravi Dinakar
resourceprojectProfessional Development, Conferences, and Networks
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE:
-
TEAM MEMBERS:
Stephen MadigoskyWilliam KeilbaughVictor DonnayBruce GrantThomas Schrand
resourceprojectWebsites, Mobile Apps, and Online Media
SETAC is funded by the Lifelong Learning Programme of the European Union and emerges out of the need to undertake specific action for the improvement of science education. It regards science education as among the fundamental tools for developing active citizens in the knowledge society. SETAC draws on the cooperation between formal and informal learning institutions, aiming to enhance school science education and active citizenship looking further into the role of science education as a lifelong tool in the knowledge society. On the day of the project’s conclusion, 31 October 2010, after two years of work SETAC contributes the following products and results to the field: 1. “Quality Science Education: Where do we stand? Guidelines for practice from a European experience” This is the concluding manifesto that presents the results of the SETAC work in the form of recommendations for practitioners working in formal and informal science learning institutions; 2. “Teaching and Learning Scientific Literacy and Citizenship in Partnership with Schools and Science Museums” This paper constitutes the theoretical framework of the project and innovative ways of using museums for science education and develop new modes of linking formal and informal learning environments; 3. Tools for teaching and learning in science: misconceptions, authentic questions, motivation. Three specific studies, leading to three specific reports, have been conducted in the context of the project, looking in particular into notions with an important role in science teaching and learning. These are on: Children’s misconceptions; Authentic questions as tool when working in science education; Students’ attitudes and motivation as factors influencing their achievement and participation in science and science-related issues; 4. Activities with schools: SETAC developed a series of prototype education activities which were tested with schools in each country. Among the activities developed between the partners, two have been chosen and are available on-line for practitioners to use and to adapt in their own context. These are: The Energy role game, a role game on Energy invites students to act in different roles, those of the stakeholders of an imaginary community, called to debate and decide upon a certain common problem; MyTest www.museoscienza.org/myTest, which aims to encourage students to engage in researching, reflecting and communicating science-oriented topics; 5. European in-service training course for primary and secondary school teachers across Europe. The training course is designed in such a way as to engage participants in debate and exploration of issues related to science education and active citizenship. The course is open to school teachers, headteachers and teacher trainers from all EU-member and associate countries. Professionals interested can apply for a EU Comenius grant. All the products of the project as well as information about the training course are available at the project website, some of them in more than one languages: www.museoscienza.org/setac
Climate change science is becoming a more frequent and integral part of the middle school curriculum. This project, NASA Data in My Field Trip, proposes to leverage a regional network of Informal Science Institutions (ISIs) committed to climate change education, the Global Climate Change Consortium (GC3). This project will support climate change education in the formal curriculum by creating opportunities for inquiry-based exploration of NASA data and products in class and as part of already established field trip experiences to ISIs. The ISIs of the recently formed GC3 include a broad range of science-based institutions including Carnegie Museum of Natural History (CMNH), Carnegie Science Center (CSC), Phipps Conservatory and Botanical Gardens, National Aviary, and the Pittsburgh Zoo and PPG Aquarium. Partners, Pittsburgh Public Schools and Wilkinsburg School District have respectively 70 and 99% minority populations. NASA Data in My Field Trip will build innovative connections among NASA data and products, ISI resources and experiences, curriculum standards, and educators in formal and informal environments. It has three components: (1) joint professional development for formal and informal educators, (2) in-class pre-field trip data explorations, and (3) the integration of NASA resources into ISI field trip experiences. In the first phase of NASA Data in My Field Trip, CMNH and CSC will pilot NASA resources as central components of middle school climate change field trips as well as in pre-visit experiences. In the second phase, three other GC3 ISIs will tailor the pilot products to their climate change field trips. In both phases, formal and informal educators will participate in joint professional development. Alignment with the school districts' curriculum and formative evaluation is critical at all steps of this project and will guide and inform the implementation of the project through both phases. The success of the project will be measured in terms of (1) educators’ attitudes toward and ability to use NASA resources, (2) the effectiveness of in-class and field trip experiences for students, (3) the development of a community of practice among informal and formal educators, and (4) the adoption of NASA data and products into informal and formal programming outside of the project’s specified reach. Primary strengths of this project are that it brings NASA resources to underserved schools and includes ISIs that have a commitment to climate change education but have not previously connected with NASA or its resources. Techniques developed in this project will be tailored to a diversity of ISIs and can therefore serve as a replicable model for NASA products throughout the ISI field.
DATE:
TEAM MEMBERS:
Kerry HandronEllen McCallieJohn RadzilowiczPittsburgh Public SchoolsWilkinsburg School DistrictPittsburgh Zoo and PPG AquariumNational AviaryPhipps Conservatory and Botanical Gardens