Literacy Volunteers of America (LVA) - Monroe County, Inc. and The College of Exploration are developing and implementing a pilot project to target traditionally under-represented ethnic groups who are limited English proficient-- many reading and writing in English at the grade 0 - grade 5.5 level. The project goals are for learners of English as a Second Language (ESL) to use digital photo cameras, digital video cameras, waterproof underwater HD cameras and GPS technologies to geo-locate, explore, observe, record, display and tell stories in English both in words, photos and short HD video clip sequences. Stories will be about the exploration of places like the National Marine Sanctuaries and other areas of the country and coasts where there are scientific observation and monitoring opportunities created and supported by NOAA partners.
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.
The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE:
-
TEAM MEMBERS:
Shuchi GroverMarie BienkowskiJohn Stamper
Most scientists say they got into science to make the world a better place and recognize this means sharing what they learn with a range of other people. But deciding to engage also means deciding what to communicate, and it’s at this stage that things get complicated.
Scientists’ most important communication decision may be figuring out their goals. Do they want to help shape local, state or national policy discussions? Do they want to influence individual behavior, such as diet choices, medical decisions or career paths?
Big-picture goal choice is, however, relatively simple, as it
This project, conducted by the University of Pittsburgh and the University of California, Berkeley, seeks to discover what makes middle school students engaged in science, technology, engineering, and mathematics (STEM). The researchers have developed a concept known as science learning activation, including dispositions, practices, and knowledge leading to successful STEM learning and engagement. The project is intended to develop and validate a method of measuring science learning activation.
The first stage of the project involves developing the questions to measure science activation, with up to 300 8th graders participating. The second stage is a 16-month longitudinal study of approximately 500 6th and 8th graders, examining how science learning activation changes over time. The key question is what are the influencers on science activation, e.g., student background, classroom activities, and outside activities.
This project addresses important past research showing that middle school interest in STEM is predictive of actually completing a STEM degree, suggesting that experiences in middle school and even earlier may be crucial to developing interest in STEM. This research goes beyond past work to find out what are the factors leading to STEM interest in middle school.
This work helps the Education and Human Resources directorate, and the Division of Research on Learning, pursue the mission of supporting STEM education research. In particular, this project focuses on improving STEM learning, as well as broadening participation in STEM education and ultimately the STEM workforce.
The Environmental Scientist-in-Residence Program will leverage NOAA s scientific assets and personnel by combining them with the creativity and educational knowledge of the pioneer hands-on science center. To do this, the program will embed NOAA scientists in a public education laboratory at the Exploratorium. Working closely with youth Explainers, exhibit developers, and Web and interactive media producers at the Exploratorium, NOAA scientists will share instruments, data, and their professional expertise with a variety of public audiences inside the museum and on the Web. At the same time the scientists will gain valuable skills in informal science communication and education. Through cutting-edge iPad displays, screen-based visualizations, data-enriched maps and sensor displays, and innovative interactions with visitors on the museum floor, this learning laboratory will enable NOAA scientists and Exploratorium staff to investigate new hands-on techniques for engaging the public in NOAA s environmental research and monitoring efforts.
CoCoRaHS (The Community Collaborative Rain, Hail and Snow Network) is a citizen science program where thousands of volunteers across the entire country measure and report the amount of precipitation that falls each day in their own neighborhood (see http:www.cocorahs.org). In the next three years CoCoRaHS will use strategies from the "Citizen Science Toolkit" and align activities to the "Essential Principles to Climate Science" to engage thousands more participants in collecting, reporting and exploring precipitation. Evapotranspiration measurements will be added to better teach and demonstrate the hydrologic cycle in action. Through strong NOAA partnerships with the National Weather Service, the National Climatic Data Center, the Earth Systems Research Lab and the National Operational Hydrologic Remote Sensing Center, precipitation data quality and accessibility for professional users will be enhanced. The CoCoRaHS network will be constructing training, data entry and visualization tools utilizing Web 2.0 concepts, cyberlearning tools and hand-held device applications with a goal of increasing participation and expanding the current volunteer network into broader, younger, more diverse and more interactive audiences.
Focusing on climate change and its impact on coastal zones and marine life, Visualizing Change will build educator capacity in the aquarium community and informal science education field. Building on NOAA datasets and visualizations, we will provide interpreters with strategic framing communication tools and training using the best available social and cognitive research so that they can become effective climate change educators. Objectives are to (1) Develop and test four exemplary interpretive "visual narratives" that integrate research-based strategic communication with NOAA data visualization resources; (2) Test the application of the visual narratives in a variety of geographic regions, institution types (aquarium, science center, etc.), and using multiple technology platforms (Science on a Sphere, Magic Planet portable globe display, iPad/tablets, and video walls); (3) Build a professional development program for climate change interpretation with data visualization; and (4) Leverage existing networks for dissemination and peer support.
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
Over three years beginning in January 2016, the Science Museum of Virginia will launch a new suite of public programming entitled “Learn, Prepare, Act – Resilient Citizens Make Resilient Communities.” This project will leverage federally funded investments at the Museum, including a NOAA-funded Science On a Sphere® platform, National Fish and Wildlife-funded Rainkeepers exhibition, and the Department of Energy-funded EcoLab, to develop public programming and digital media messaging to help the general public understand climate change and its impacts on Virginia’s communities and give them tools to become resilient to its effects. Home to both the delicate Chesapeake Bay ecosystem and a highly vulnerable national shoreline, Virginia is extremely susceptible to the effects of climate change and extreme weather events. It is vital that citizens across the Commonwealth understand and recognize the current and future impacts that climate variability will have on Virginia’s economy, natural environment, and human health so that they will be better prepared to respond. In collaboration with NOAA Chesapeake Bay Office, George Mason University’s Center for Climate Change Communication, Virginia Institute for Marine Science, Public Broadcasting Service/National Public Radio affiliates, and Resilient Virginia, the Museum will use data from the National Climatic Data Center and Virginia Coastal Geospatial and Educational Mapping System to develop and deliver new resiliency-themed programming. This will include presentations for Science On a Sphere® and large format digital Dome theaters, 36 audio and video digital media broadcast pieces, two lecture series, community preparedness events, and a Resiliency Checklist and Certification program. This project supports NOAA’s mission goals to advance environmental literacy and share its vast knowledge and data with others.
The Museum of Science and Industry, Chicago (MSI) will develop museum-based education resources to engage high school age youth in the exploration of climate literacy and Earth systems science through its Teen ACES (Teen Advocates for Community and Environmental Sustainability) project. As the future leaders who will make decisions about the issues they face in their communities, youth participants will be positioned to act as advocates for establishing resilient communities in the Midwest. The project will utilize a variety of resources, including NOAA Science On a Sphere® (SOS) technology and datasets, Great Lakes and local climate assets from the Midwest Regional Climate Center and Illinois-Indiana Sea Grant, and existing local planning guides to develop museum-based youth programming. Teens will explore environmental hazards including severe weather events and temperature extremes, and consider the impact of the Great Lakes on regional climate. The Chicago Metropolitan Agency for Planning, Resilient Chicago, the Institute of Environmental Sustainability at Loyola University Chicago, and the South Metropolitan Higher Education Consortium will advise on the project to support the integration of municipal resiliency plans and their related adaptation and mitigation measures into the program. Teen participants will share their learning with the Chicago community through interactions with public visitors in the Museum, programs at Chicago Public Library branches, and MSI’s teen science program broadcast on Chicago’s public access TV station. Teen facilitated experiences will be tailored for SOS® experiences at MSI. The project will revise content for use in 100 after-school science clubs for students from diverse communities across the Chicago area. Further dissemination to three regional science center partners equipped with SOS® technology (Boonshoft Museum of Discovery in Dayton, Ohio; Science Central in Fort Wayne, Indiana; and Hawthorn Hollow in Kenosha, Wisconsin) will build a foundation of knowledge and resources to adapt materials to meet the needs of their communities and consider how their vulnerabilities and resiliency plans may differ from Chicago.
Girls met to engage with Through My Window twice each week after school. The afterschool program format provided a freer, less structured atmosphere than a classroom setting. Students extensively debated and investigated the questions and themes posed by the novel, Talk to Me. The meeting space had plenty of space for students to move around, as well as teachers who encouraged the expression of full emotional and intellectual enthusiasm for the story at hand.
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater program and hands-on group activities. Multimedia Research, an independent evaluation firm, implemented a summative evaluation with low income, inner-city