Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
In this article we explore how activity design and learning contexts can influence youth failure mindsets through a case study of five youth who described failure as sometimes a good thing and sometimes a bad thing (a perspective we characterize as Failure as Mosaic, described in the article). These youth and their descriptions of failure-positive and failure-negative experiences offer a unique opportunity to identify how experiences can be designed to support learning and persistence. In order to understand differing views of failure among youth, we researched the following questions:
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will conduct a feasibility study of an informal youth STEM learning program. High school students from under served communities in New York City will use existing historical, cultural and environmental data to investigate selected UNESCO World Heritage sites. Participants will apply the skills and knowledge they have developed from their analysis of the UNESCO sites and apply them to their local communities. Participants will identify, map, and analyze their own community heritage sites, using relevant citizen science, environmental and cultural data. Throughout the program, the project will involve participants in maker-related activities. Participants will design devices to collect data, explore variables through model making, and communicate findings through models and artistic forms with the to spur both individual and community action for selected heritage sites.
The project will be implemented as a 9-month weekly after school program in Long Island City, New York. Most students from the school will be from low-income families and are youth of color. The research the question for the study is "How does access to STEM increase for historically underrepresented youth populations when culturally relevant curriculum connects citizen science and making practices?" During the first phase of the program, participants will engage with core STEM concepts and making/design processes through an engaging curriculum that explores damaged UNESCO World Heritage Sites. During the second phase, youth will identify, map, and plan enhancements for their own community heritage sites or environmental landmarks. A condensed version of the program will be piloted in the summer with youth from across the city. The Educational Development Corporation will conduct a process and summative evaluation of the project. Process evaluation, which will provide ongoing feedback to the project team, will include document review, observation of program implementation, and interviews with project partners. Summative evaluation will continue these methods, supplemented by pre- and post-participation participant surveys and focus-groups. Validated survey instruments, such as the Growth Mindset Scale, and the Common Instrument Suite (PEAR Institute) will be used. Resources from research and program practices will be disseminated through publications and conference presentations to the education research community, global learning and design fields, and practitioners from after school and other informal learning environments. Participants will share project results with their communities.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This Conference Paper was presented at the International Soceity for the Learning Sciences Confernece in June 2018. We summarize interviews with youth ages 9-15 about their failure mindsets, and if those midsets cross boundaries between learning environments.
Previous research on youth’s perceptions and reactions to failure established a view of failure as a negative, debilitating experience for youth, yet STEM and in particular making programs increasingly promote a pedagogy of failures as productive learning experiences. Looking to unpack perceptions of failure across contexts and
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models for making in a variety of settings through the Enabling the Future of Making to Catalyze New Approaches in STEM Learning and Innovation Dear Colleague Letter. This Early Concept Grant for Exploratory Research (EAGER) will test an innovative approach to bringing making from primarily informal out-of-school contexts into formal science classrooms. While the literature base to support the positive outcomes and impacts of design-based making in informal settings at the K-12 level is emerging, to date, minimal studies have investigated the impacts of making design principles within formal contexts. If successful, this project would not only add to this gap in the literature base but would also present a novel model for bridging the successful engineering design practices of making and tinkering primarily found in informal science education into formal science education classrooms. The model would also demonstrate an innovative, highly interactive way to engage high school students and their teachers in engineering based design principles with immediate real-world applications, as the scientific instruments developed in this project could be integrated directly into science classrooms at relatively minimal costs.
Through a multi-phased design and implementation model, high school students and their teachers will engage deeply in making design principles through the design and development of their own scientific instruments using Arduino-compatible hardware and software. The first phase of the project will reflect a more traditional making experience with up to twenty high school students and their teachers participating in an after-school design making club, in this case, focused on the development and testing of scientific instrument prototypes. During the second phase of the project, the first effort to transpose the after school making experience to a more formalized experience will be tested with up to eight students selected to participate in two week summer research internships focused on scientific instrument design and development through making at Northwestern University. A two-day summer teacher workshop will also be held for high school teachers participating in the subsequent pilot study. The collective insights gleaned from the after school program, student internships, and teacher workshop will culminate to inform the full implementation of the formal classroom pilot study. The third and final phase will coalesce months of iterative, formative research, design and development, resulting in a comprehensive pilot investigation in up to seven high school physics classrooms.
Using a multi-phased, mixed methods exploratory design-based research approach, this 18-month EAGER will explore several salient research questions: (a) How and to what extent does the design & making of scientific instrumentation serve as useful tasks for learning important science and engineering knowledge, practices, and epistemologies? (b) How engaging is this making activity to learners of diverse abilities and prior interests? What can be generalized to other types of making activities? (c) How accessible is the Arduino hardware and coding environment to learners? What combination of hardware and software materials and tools best support accessibility and learning in this type of digital making activity? and (d) What types of scaffolding (for students and teachers) are required to support the effective use of maker materials and activities in a classroom setting? Structured interviews, artifacts, video recordings from visor cameras, student design logs, logfiles, and ethnographic field notes will be employed to garner data and address the research questions. Given the early stage of the proposed research, the dissemination of the findings will be limited to a few select journals, teacher forums and workshops, and professional conferences.
This EAGER is well-poised to directly impact up to 125 high school physics students (average= 25 students/class), approximately 7 high school physics teachers, 6-8 high school summer interns, nearly 20 high school students participating in the after-school design making club, and indirectly many more. The results of this EAGER could provide the basis and evidence needed to support a more robust, expanded future investigation to further substantiate the findings and build the case for similar efforts to bring making into formal science education contexts.
This poster was presented at the 2014 AISL PI Meeting. It describes a project that uses location-based augmented reality games on smartphones to engage youth in activities developed by informal science institutions.
DATE:
TEAM MEMBERS:
Missouri Botanical GardenBob Coulter
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE:
-
TEAM MEMBERS:
Southwestern CollegeDavid BrownDavid Hecht
Community Science Workshops: Beginning a National Movement is an extension of a successful, NSF-funded project that created a network of community science centers in California. The San Francisco State University will now take this successful venture to a national level by working with the American Association for the Advancement of Science (AAAS) and Quality Education for Minorities (QEM) to establish a new Community Science Workshop (CSW) 8-10 in underserved communities over the next four years. Once sites are selected, CSW directors participate in an intensive two-week training program. This is followed by visits by site mentors, and ongoing support through the WWW and other media, which contributes to the establishment and eventual sustainability of the centers. Each site partners with larger, established museums and science centers locally to gain much needed assistance with exhibits and education programs. Community Science Workshops contain permanent exhibit space, a workshop area for student projects and classroom/storage space. They serve a variety of audiences through after school, family, school and summer science programs. Potential locations include Arizona, Florida, Louisiana, Michigan, Montana, Nebraska, New York, Tennessee, Texas, Washington and the District of Columbia.
Chabot Space and Science Center seeks support to engage in a six-month planning process for "Imagine That!," a multi-faceted science and technology career exploration program. In partnership with the Columbia River Exhibition of History, Science & Technology (CREHST) and the American Museum of Science & Energy (AMSE), Chabot proposes to fill the gap between well-intentioned and designed programs and the programs' abilities to really influence/affect future career choices by participants. "Imagine That!" will familiarize youth with a wide range of careers in scientific and technical fields through after-school and summer programs that offer in-depth career exploration and guidance activities, hands-on experiences that complement science education in school and an introduction to role models. "Imagine That!" will also provide parents with resources to support their children as they explore potential careers in science, technology and engineering. This planning grant will enable the three major science museums, Junior Achievement and government and business partners to develop the logistics for working together on an ambitious collaborative program of national scope. "Imagine That!" has the potential for broad and significant impact. Not only would it create a national program of career exploration, it will strengthen and diversify the STEM workforce. The national impact of this project is assured by the inclusion of geographically diverse partners, regional advisory councils and a robust dissemination plan.