Skip to main content

Community Repository Search Results

resource project Public Programs
A makerspace is a place where participants explore their own interests and learn by creating, tinkering, and inventing artifacts through the use of a rich variety of tools and materials. This project will develop and research a flexible model for makerspaces that can be adapted to local settings to support informal STEM learning for hospitalized, chronically ill patients in pediatric environments who are predominantly youth of color from low-income backgrounds. These youth are subject to health disparities and healthcare inequities. Their frequent absence from school and other activities disrupt friendship formations, reduce their opportunities for social support, reduce their access to environments where they can feel a sense of self-agency through learning and creative activities. Through patient centered co-design, this project will build adaptable STEM makerspace environments conducive to STEM-rich learning, the exercise of self-agency, and development of STEM identity. Project design will focus on the sensitive nature of working with vulnerable populations (i.e., immunocompromised patients). The project will develop and disseminate several resources: (1) a flexible makerspace model that can be adapted to work in different pediatric settings; (2) research methods for conducting research in highly sensitive environments with and alongside young patients; and (3) professional development resources and a playbook including guidebook and facilitators guide that will articulate principles and processes for designing, implementing and sustaining makerspaces in pediatric settings. These resources will be widely disseminated through maker and other informal STEM networks.

The project will pursue two innovations. First, the project will develop the physical design of adaptable informal STEM makerspaces in pediatric settings. Second, the project will develop innovative patient-centered methodologies for studying approaches to physical design and the effects of makerspace installations for informal STEM-learning, self-agency, and STEM identity development. Using a design-based research approach, the project will investigate: (1) the extent to which physical makerspace designs support access to material, relational, and ideational resources for STEM-learning and well-being; (2) the extent to which makerspace installations, researchers, and medical care staff support patients in accessing and generating tools and other resources for personal learning and a sense of agency; and (3) the extent to which makerspace design with a focus on affording material, relational, and ideational resources provide rich opportunities for young patients to explore their own interests and cultivate STEM identities. One of the project's innovations, beyond development of adaptable makerspace model involves developing an innovative patient-centered methodology for conducting educational research toward broadening participation in STEM in highly sensitive medical care environments. The project will employ a mixed-methods research design and collect a variety of data to address these areas of research including documentation of makerspace design plans and renderings, observational data gathered through fieldnotes, video and audio recordings, informal interviews with patients, their families, and child-care staff, and patient generated artifacts. Articles for researchers and practitioners will be submitted for publication to appropriate professional journals and peer-reviewed publications.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Gokul Krishnan Maria Olivares
resource project Public Programs
While there is increased interest in youth-centered maker programs in informal educational contexts, scarce research-informed professional development exist that focus on how informal educators do or should plan and handle ongoing, just-in-time support during moments of failure. Prior research supports the important role of failure in maker programming to increase learning, resilience and other noncognitive skills such as self-efficacy and independence. The objective of this project is to address this gap through adapting, implementing, and refining a professional development program for informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in maker programs in informal learning contexts. In the first two years of the project, the research team will work closely with six partners to implement and refine the professional development model: The Tech Museum of Innovation, The Bakken Museum, Montshire Museum of Science, The Minneapolis Institute of Art, Thinkery, and Amazeum Children’s Museum. In the last year of the project, the team will scale-up the professional development model through partnering with an additional nine institutions implementing maker programming for youth. The professional development consists of two models. In the first model, we support one to two lead facilitators at each partnering institution through an initial three-day workshop and ongoing support meetings. In the second model, the lead facilitators support other informal educators at their institution implementing making programs for youth. This project will enhance the infrastructure for research and education as collaborations and professional learning communities will be established among a variety of informal learning institutions. The project will also demonstrate a link between research and institutional and societal benefits through shifting the connotation and perceptions of failure to be valued for its educational potential and to empower informal educators to support discomfort and struggle throughout maker programs with youth.

The three goals of this collaborative project are to (a) advance the field of informal education through a research-based professional development program specific to youths’ failures during maker programs; (b) support shifts in informal educators’ facilitation practices and perspectives around youth’s failure experiences, and (c) investigate the effects of the professional development on youths’ resilience and failure mindset. The iterative nature of this project will be informed by the collection and analysis of video data of professional development sessions and informal educators facilitating maker programs, reflective journaling, surveys regarding the professional development, and pre-post surveys from youth engaged in the maker programs. Dissemination will address multiple stakeholders, including informal educators, program developers, evaluators, researchers, and public audiences.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

Making, which supports interest-driven skill-development and learning, has been recognized as having the potential to engage underserved youth in STEM. Makerspaces are community spaces that allow participants to create items using tools, such as 3-D printers, computer-aided design, and digital fabrication technologies. Makerspaces and making-related programs are often inaccessible, unaffordable, or simply not available to underserved youth. Digital Harbor will partner with recreation centers, two in Pittsburgh and two in Baltimore, to research, refine and implement an equity-based approach to making that will engage underserved youth aged 12-16 in making. The project will prepare out-of-school time (OST) educators to collaboratively develop culturally sensitive curricula with underserved youth to engage them in maker-based technology and computer science experiences. The project will (1) design a professional development program that will prepare and support local educators to collaboratively design and deliver localized, maker-based, STEM curricula; (2) research the impact of these programs on both educators' and youth's self-efficacy, creativity, and attitudes towards STEM; and (3) develop and evaluate an online Localization Toolkit that will prepare educators in makerspaces across the nation in using an equity-based approach to create localized content. The project will result in four new maker sites (two in Baltimore and two in Pittsburgh directly impact 4 sites (10 educators and 240 youth). The project will result several resources that will support the development and educational programs of other community sites. The resources will include the Localization Toolkit, Case Studies, Best Practices, and Research Study. The Localization Toolkit has the potential to strengthen infrastructure and capacity building in OST maker-based programs, as well as other informal and formal education programs using similar pedagogies and design principles.

The project will use a mixed-methods approach in researching the challenges and processes involved in establishing the four maker sites in Baltimore and Pittsburgh, the approaches and effectiveness of the professional development program on OST educators, and the impacts of the project of participation on the self-efficacy, creativity, and attitudes on participating youth and educators. The research study will apply several instruments and data collection sources to develop quantitative data, including youth attendance logs, the Upper Elementary and Middle/High School Student Attitudes toward STEM survey, a retrospective technology self-efficacy survey and pre-post surveys. In addition to project document review, the researchers will collect qualitative data through educator interviews, educator focus groups, and youth focus groups. Project research and resources will reach key audiences of learning scientists and OST educators through articles in peer-reviewed and practitioner journals, public events and professional conferences. These audiences will also be reached through the project website, which will share project resources. The project will reach OST sites across the country directly through dissemination partners, including the National Recreation and Parks Association, Association of Science and Technology Centers, and statewide out-of-school networks.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Foad Hamidi Andrew Coy
resource project Public Programs
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).

The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).

This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Breanne Litts
resource research Public Programs
Tinkering is an approach to learning increasingly adopted within informal learning settings to engage people with STEM learning (science, technology, engineering and mathematics). It builds on ideas in inquiry-based pedagogy and exploits some of the most engaging and motivational elements of learner-centered, immersive and hands-on learning approaches to develop 21st century skills such as critical thinking, creativity, collaboration, problem solving, communication, responsibility, self-confidence, digital literacy and entrepreneurship. In a Tinkering activity, the learner is presented with
DATE:
TEAM MEMBERS: Emily Harris Mark Winterbottom Inka de Pijper Vanessa Mignan MARIA XANTHOUDAKI
resource research Public Programs
Engaging with Tinkering is a highly stimulating and complex experience and invites rich reflections from museum practitioners and teachers. "Tinkering as an inclusive approach for building STEM identity and supporting students facing disadvantage or with low science capital” presents the reflective practice process and tools designed by the "Tinkering EU: Building Science Capital for All" project aiming to understand in more depth the potential impact of using a Tinkering approach with students facing disadvantage. Using tools specifically designed to help teachers observe their students
DATE:
TEAM MEMBERS: Emily Harris Mark Winterbottom MARIA XANTHOUDAKI
resource project Public Programs
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.

Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Maria Olivares Eli Tucker-Raymond Edna Tan Jill Castek Cynthia Graville
resource research Public Programs
Providing an original framework for the study of makerspaces in a literacy context, this book bridges the scholarship of literacy studies and STEM and offers a window into the practices that makers learn and interact with. Tucker-Raymond and Gravel define and illustrate five key STEM literacies—identifying, organizing, and integrating information; creating and traversing representations; communicating with others for help and feedback during making; documenting processes; and communicating finished products—and demonstrate how these literacies intersect with making communities.
DATE:
resource evaluation Media and Technology
Learning to See, Seeing to Learn is a National Science Foundation-funded project to develop www.macroinvertebrates.org, a digital observation tool and set of informational resources that can supplement volunteer biomonitoring trainings and improve aquatic macroinvertebrates identification. Project researchers are interested in how trainers and volunteers use the tool, as well as how training that incorporates the tool impacts volunteers’ confidence in and accuracy around aquatic macroinvertebrates identification. In November 2018, project partner, Stroud Water Research Center, conducted a
DATE:
TEAM MEMBERS: Camellia Sanford-Dolly
resource research Public Programs
The making and tinkering movement has become increasingly mainstream over the past decade, pioneered in part through the popularity of magazines like `Make', events such as Maker Faire and DIY websites including `Instructables'. Science centres and museums have been developing their own ideas, notably the Tinkering Studio at the Exploratorium. In this commentary piece, we reflect on why this movement has a strong appeal for the Life Science Centre in Newcastle upon Tyne and why we are in the process of developing a new making and tinkering space to help us enact our centre's vision to `Enrich
DATE:
TEAM MEMBERS: Elin Roberts
resource research Public Programs
This blog post describes a Teen Science Café in Oxford Hills, Maine, which featured the role of drones in emergency response. Colonel Dan Leclair of the University of Maine at Augusta brought drones of all sizes and demonstrated how they were used following hurricanes to make maps of the damage that was caused. He talked about the advantages of a drone being able to go where a plane can’t go: above a hurricane, a wildfire, or a burning building. In addition to mapping the severity of the disaster, drones can deliver much-needed supplies, even portable cell-phone towers. Drones are being used
DATE:
TEAM MEMBERS: Jan Mokros Dan Leclair
resource research Public Programs
Natural disasters are increasing at a rapid rate, with the Centre for Research on the Epidemiology of Disasters reporting that climate-related disasters occurred more than twice as frequently, on average, from 2000 to 2015 in comparison to the 1980s. Disaster education, on the other hand, is sparse and unsystematic. The goal of our work was to develop brief and impactful educational interventions, accessible to teens throughout the country, and that focused on using technology to confront natural disasters. We did this through the Teen Science Café Network, a group that sponsors out-of-school
DATE:
TEAM MEMBERS: Jan Mokros Jacob Sagrans Michael Mayhew Michelle Hall