Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Aaron Wilson Mayra Ortiz Xiaohui Wang Sergey Grigorian
resource research Informal/Formal Connections
Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian Zahra Hazari Philip Sadler Gerhard Sonnert
resource project Informal/Formal Connections
Mentoring is a widely accepted strategy for helping youth see how their interests and abilities fit with education and career pathways; however, more research is needed to better understand how different approaches to mentoring impact youth participants. Near-peer mentoring can be a particularly impactful approach, particularly when youth can identify with their mentors. This project investigates three approaches to near-peer mentoring of high-school-aged Hispanic youth by Hispanic undergraduate mathematics majors. Mentoring approaches include undergraduates' visits to high school classrooms, mathematics social media, and a summer math research camp. These three components of the intervention are aimed at facilitating enjoyment of advanced mathematics through dynamic, experiential learning and helping high school aged youth to align themselves with other doers of mathematics on the academic stage just beyond them, i.e., college.

Using a Design-Based Research approach that involves mixed methods, the research investigates how the three different near-peer mentoring approaches impact youth participants' attitudes and interests related to studying mathematics and pursuing a career in mathematics, the youth's sense of whether they themselves are doers of mathematics, and the youth's academic progress in mathematics. The project design and research study focus on the development of mathematical identity, where a mathematics identity encompasses a person's self-understanding of himself or herself in the context of doing mathematics, and is grounded in Anderson (2007)'s four faces of identity: Engage, Imagine, Achieve, and Nature. The study findings have the potential to uncover associations between informal interactions involving the near-peer groups of high school aged youth and undergraduates seen to impact attitudes, achievement, course selection choices, and identities relative to mathematics. It also responds to an important gap in current understandings regarding effective communication of mathematics through social media outlets, and results will describe the value of in-person mathematical interactions as well as online interactions through social media. The study will result in a model for using informal near-peer mentoring and social media applications for attracting young people to study and pursue careers in STEM. This project will also result in a body of scripted MathShow presentations and materials and Math Social Media content that will be publicly available to audiences internationally via YouTube and Instagram.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Aaron Wilson Sergey Grigorian Xiaohui Wang Mayra Ortiz
resource project Summer and Extended Camps
The University of Texas at Austin's Texas Advanced Computing Center, Chaminade University of Honolulu (CUH), and the Georgia Institute of Technology will lead this NSF INCLUDES Design and Development Launch Pilot (DDLP) to establish a model for data science preparation of Native Hawaiian and Pacific Islander (NHPI) students at the high school and undergraduate levels. The project is premised on the promise of NHPI communities gaining access to, and the ability to work with, large data sets to tackle emerging problems in the Pacific. Such agency over "big data" sets that are relevant to Pacific issues, and contemporary skills in data science, analytics and visualization have the potential to be transformative for community improvement efforts. The effort has the potential to advance knowledge, instructional pedagogy and practices to improve NHPI high school and undergraduate students performance in and attraction to STEM education and careers.

The project team will work to: 1) Increase interest and proficiency in data science and visualization among NHPI high school and undergraduate students through a summer immersion experience that bridges computation and culture; 2) Build data science capacity at an NHPI serving undergraduate institution (CUH) through creation of a certificate program; and 3) Develop and expand partnerships with other organizations with related goals working with NHPI populations. The month-long summer training for 20 NHPI college students, and five NHPI high school students, takes place at CUH and focuses on data science, visualization, and virtual reality, including working on problem sets that require data science approaches and incorporate geographically, socially- and culturally-relevant research themes.
DATE: -
TEAM MEMBERS: Kelly Gaither Rosalia Gomez
resource project Summer and Extended Camps
This NSF INCLUDES Design and Development Launch Pilot is to expand the Navajo Nation Math Circle model to other sites, and to develop and launch a network of math circles based on the NNMC model. The Navajo Nation Math Circle model is a novel approach to broadening the participation of indigenous peoples in mathematics that, ultimately, seeks to improve American Indian students' attitudes towards mathematics, persistence with challenging problems, and grades in math courses. Navajo Nation Math Circles bring teachers, students, and mathematicians together to work collaboratively on challenging, but meaningful and fun, math problems. Through this NSF INCLUDES project, additional math circles across the Navajo Nation will be launched and a mirror site in Washington State serving additional tribes (such as Puyallup, Muckleshoot, Tulalip, and Stillaguamish) will be established.

Originating approximately a century ago in Eastern Europe as a means to engage students in mathematical thinking, math circles bring teachers, students, and math professionals together to work collaboratively on challenging, but relevant and interesting, math problems. Navajo Nation Math Circles, established math circles in various Navajo Nation communities, are the foundation of this INCLUDES project. One goal of this effort is to launch a network with the capacity to support the replication and adaption of math circles in multiple sites as an innovative strategy for encouraging indigenous math engagement through culturally enriched open-ended group math explorations. In addition, the Navajo Nation Math Circle model will be expanded to new math circles in the Navajo Nation, as well as in Washington State to serve additional tribes. Cells in the network will implement key elements of the Navajo Nation Math Circle model, adapting them to their particular contexts. Such elements include facilitation of open-ended group math explorations, incorporating indigenous knowledge systems; a Mathematical Visitor Program sending mathematicians to schools to work with students and their teachers; inclusion of mathematics in public festivals to increase community mathematical awareness; a two-week summer math camp for students; and teacher development opportunities ranging from workshops to immersion experiences to a mentoring program pairing teachers with mathematicians.
DATE: -
TEAM MEMBERS: David Auckly Henry Fowler Jayadev Athreya
resource project Media and Technology
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
DATE: -
TEAM MEMBERS: Lisa Gugenheim
resource research Public Programs
STEM learning ecosystems harness unique contributions of educators, policymakers, families, and others in symbiosis toward a comprehensive vision of science, technology, engineering, and math (STEM) education for all children. This paper describes the attributes and strategies of 15 leading ecosystem efforts throughout the country with the hope that others may use their lessons to deepen rich STEM learning for many more of America’s children.
DATE:
TEAM MEMBERS: Noyce Foundation Kathleen Traphagen Saskia Traill
resource project Public Programs
Voyage of Discovery is a comprehensive and innovative project designed to provide K-12 youth in Baltimore City with an introduction to mathematics, engineering, technology, environmental science, and computer and information science, as it relates to the maritime and aerospace industries. The Sankofa Institute, in partnership with the Living Classrooms Foundation and a host of marine, informal science, community, and educational organizations, collaborate to make science relevant for inner-city youth by infusing science across the curriculum and by addressing aspects of history and culture. Youth are introduced to historical, current, and future innovations in shipbuilding as a means to learn the science, mathematics, and history associated with navigation, transportation, environmental science, and shipping. Activities will take place at the Frederick Douglass-Isaac Myers Maritime Park and Museum where students participate in intensive afterschool, Saturday, and summer sessions. Families are invited for pre-session orientation meetings and again at the end of each session to observe student progress. This project will provide over 3,900 K-12 youth with the opportunity to learn mathematics (algebra, geometry, and trigonometry), physics (gravity, density, mechanics), design, and estuarine biology while participating in hands-on sessions. Project deliverables include a 26-foot wooden boat, a working model of a dirigible, a submarine model, and pilot control panel models, all constructed by students and subsequently incorporated into exhibits at the USS Constellation Museum. The project also results in the production of two curricula--one each on celestial navigation and propulsion. Voyage of Discovery informs the literature on inquiry-based informal science education programs and strategies to engage minority and low-income youth in learning science and technology.
DATE: -
TEAM MEMBERS: Sandra Parker Scott Raymond
resource research Public Programs
More and more young people are learning about science, technology, engineering, and mathematics (STEM) in a wide variety of afterschool, summer, and informal programs. At the same time, there has been increasing awareness of the value of such programs in sparking, sustaining, and extending interest in and understanding of STEM. To help policy makers, funders and education leaders in both school and out-of-school settings make informed decisions about how to best leverage the educational and learning resources in their community, this report identifies features of productive STEM programs in
DATE:
TEAM MEMBERS: National Research Council
resource research Public Programs
STARBASE Minnesota strives to increase the knowledge, skills, and interest of inner-city elementary school youth in science, technology, engineering, and math (STEM) for greater academic and lifelong success. This study examines the potential long-term impacts of participation, including interest and engagement in STEM, academic achievement, high school graduation, and college enrollment.
DATE:
TEAM MEMBERS: Caryn Mohr Dan Mueller
resource project Public Programs
The Chester County intermediate Unit developed strong collaborations between school districts and informal education providers across Pennsylvania to engage thousands of students in high quality learning experiences. NASA will support these partnering institutions as they engage local teachers in professional development in high quality instruction during the school year. Requirements for both summer activities and school year activities necessitates cooperative agreements with secondary education partners to ensure fulfilling participation requirements such as reaching a large number of middle school students and teachers. The CCIU has many potential partners in the PA SoI project who have expressed interest in participating; including Carnegie-Mellon Robotics Academy, Cheyney University, Widener University, the Philadelphia School District, the Pennsylvania Department of Education and the NASTAR flight facility. With a renewed effort by the CCIU the PA Summer of Innovation Program will be implemented through the PAIU NET to provide quality STEM programming to students and STEM training to teachers while monitoring student outcomes. In Eastern PA camps will be held August 1-5 at 36 sites in the 20 participating school districts statewide. In Chester County, camp sites include Gordon Elementary School and Pope John Paul II Regional Catholic School. Additionally several NASA SoI Mini-Camps were held increasing the breath and depth of the program's impact.
DATE: -
TEAM MEMBERS: Chester County Intermediate Unit John Hall