Skip to main content

Community Repository Search Results

resource project Public Programs
The goal of the project is to advance understanding of basic questions about learning and teaching through the development of a theory of embodied mathematical cognition that can apply to a broad range of people, settings and activities. The investigative team brings together expertise from a range of quantitative and qualitative research methodologies. A theory of embodied mathematical cognition empirically rooted in classroom learning and workplace practices will broaden the range of activities and emerging technologies that count as mathematical, and help educators to envision alternative forms of bodily engagement with mathematical problems.
DATE: -
TEAM MEMBERS: Ricardo Nemirovsky Rogers Hall Martha Alibali Mitchell Nathan Kevin Leander
resource project Media and Technology
Purpose: An estimated 5 to 8% of elementary school students have some form of memory or cognitive deficit that inhibits learning basic math. Researchers have identified several areas where children with math learning difficulties struggle. These include a strong sense of number facts to quickly and accurately perform operations on single digit numbers, the use of strategies to solve problems which have not yet been memorized, a sense to figure out whether or not an answer is reasonable, and self-monitoring to assess one's own efficacy and understanding. To support students with math learning difficulties in grades 1 to 4, this project team will develop a series of apps for touch-screen tablets that encourage single digit operational fluency, conceptual understanding, strategy awareness, and self-understanding.

Project Activities: During Phase I project in 2012, the research team developed a prototype of the single digit addition game, following an iterative process incorporating feedback from teachers and students having difficulty with math. Nineteen students participated in a pilot study, and the researchers found that the prototype functioned well and that users were engaged by the game. In Phase II, the team will build and refine the back end system, design and develop the teacher website, and create content for games in subtraction, multiplication, and division. Researchers will carry out a pilot test of the usability and feasibility, fidelity of implementation, and promise of the game to improve learning. Students in first to fourth grade identified by teachers as having the greatest difficulty with math will participate in the pilot study. Half of the 120 students participating in the pilot study will be randomly selected to play the game as a supplement to classroom learning whereas the other half will not have access. Students in the control group will be provided the games at the end of the study. Analyses will compare pre- and post-test math scores.

Product: The web-based game, MathFacts, will include a series of apps for touch-screen tablet computers to support math learning for 1st to 4th grade students with major or sometimes intractable learning difficulties. In the game, students will learn content through mini-lessons, engage with problems in practice and speed rounds, and then receive formative feedback on their performance. Students will use and manipulate blocks, linker tubes, number lines, and interact with engaging pedagogical agents such as parrots and sloths. Students will set goals, advance to more challenging levels, and engage in competition. The game will be self-paced and will provide individualized formative assessment scaffolding when students do not know the answer to a question. A teacher management system will support professional development and will produce reports to guide instruction. The intended outcomes from gameplay will include increased fluency, conceptual understanding, strategy awareness, self-assessment, and motivation of basic math.
DATE: -
TEAM MEMBERS: Kara Carpenter
resource project Media and Technology
Purpose: There is concern about a decline in mathematics achievement scores among U.S. students during the middle school years. For example, while 4th grade U.S. students rank 8th overall on an international mathematics comparison, by 10th grade U.S. student's drop significantly to 25th in the same comparison. Some researchers posit that much of this decline relates to how math is taught in the U.S. and with how students become less engaged as learners in middle school. The purpose of this project is to develop a web-based game to engage 7h grade students in a narrative-based story which will apply learning of content and skills aligned to the Common Core State Standards (CCSS) in mathematics.

Project Activities: During Phase I in 2012, the team developed a functioning prototype and conducted usability and feasibility research with fourteen 7th grade students. Researchers found that the prototype functioned as intended and that students were highly engaged while playing the game. In Phase II, the team will develop a fully-functional user interface with animated characters, interactivity across student users, narrative scripts and accompanying art assets, 36 problem sets, and student and teacher dashboards and databases. After development is complete, a pilot study will examine the usability and feasibility, fidelity of implementation, and the promise of the game to improve math learning. The study will include 120 students in 6 classrooms in three schools, with one classroom per school randomly assigned to use the game and the other half assigned to a business-as-usual control. Analyses will compare student scores on pre and post mathematics measures.

Product: Empires is a web-based game that addresses 36 pre-algebra Common Core State Standards in mathematics for 7th and 8th grades. The game follows a storyline in a recreation of an ancient empire which is at the brink of agricultural revolution and of becoming a trade economy. As students play the game, they engage in math-focused activities to drive the action, such as taxing citizens to learn ratios and proportions, allocating resources to learn percentages, and measuring the distance and time between a neighboring empire by applying the principles of the Pythagorean Theorem. As a socially networked game, students will interact with other students in the class to complete trades that lead to encounters with different math problems. The game will include two helpful, funny, advisors who will scaffold learning through mathematical discourse, arguing over the next most important thing to do. The game design architecture will work on a wide range of computers, including desktops and iPads. A teacher's guide and companion website will provide guidance to classroom activities that complement the game.
DATE: -
TEAM MEMBERS: Scott Laidlaw
resource research Public Programs
This chapter reviews four projects that reflect the principles of design-based implementation research (DBIR) in an effort to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with DBIR.The goal of this chapter is to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with design-based implementation research (DBIR). As Penuel, Fishman, Cheng, and Sabelli (2011) described, DBIR entails engaging “learning scientists, policy researchers, and
DATE:
TEAM MEMBERS: Jennifer Russell Kara Jackson Andrew Krumm Kenneth Frank
resource project Media and Technology
WGBH Educational Foundation will create PEEP'S WORLD/EL MUNDO DE PEEP, a Web-based "Digital Hub," in both English and Spanish, to significantly increase the impact of the extensive collection of proven preschool science and math assets from the Emmy Award-winning TV show PEEP AND THE BIG WIDE WORLD®. This project will: (1) redesign the PEEP Web site, creating interactive media experiences that will contextualize existing content and take advantage of new Web design; (2) provide professional development for preschool educators; and (3) reach a new audience of family childcare educators, one that is woefully underserved when it comes to educational resources about science. Dissemination through a network of national organizations, including National Association of Family Child Care, National Association of Child Care Resource and Referral Agencies, National Head Start Association, National Education Association, AVANCE, and Committee for Hispanic Children and Families, will help engage the maximum number of educators and parents in the project. PEEP'S WORLD/EL MUNDO DE PEEP will provide resources for targeted audiences. Specifically these resources will provide: Children with multiple ways to engage with science or math content areas, including interactive games, animated stories, and live-action videos; Parents with guided experiences to facilitate their child's math and science play; Center-based preschool educators with a media-rich, year long science curriculum and professional development materials; and Family childcare educators with curriculum modules, integrated with media, focused on six science content areas, and professional development materials for home-care settings in English and in Spanish. The University of Massachusetts's Donahue Institute will conduct a formative evaluation of the family childcare educator resources: 200 Spanish-speaking and 200 English-speaking educators will pilot the curriculum modules and professional development videos. Concord Evaluation Group, Inc. will conduct a summative evaluation, consisting of a Family Web Site Experiment and a National Observational Study, to assess the extent to which the project is successful at achieving its intended impacts. A multifaceted national dissemination plan will include a robust social media strategy, implemented by a Spanish-speaking online community manager, to reach parents, and collaborations with early childhood education statewide systems to reach educators. The projects intended impacts are to: (1) help English- and Spanish-speaking preschoolers effectively apply science and mathematical inquiry and process skills; (2) empower English- and Spanish-speaking parents to feel more equipped and inclined to facilitate science and math exploration with their preschoolers; and, (3) provide center-based and family childcare educators with resources for incorporating math and science into their curricula and boosting their confidence in teaching these subjects. While many parents know how to read to their children, they do not typically know how to approach science or math investigations with their pre-schoolers. After parents, preschool educators are the most important promoters of a young child\'s learning. Yet, center-based and family childcare educators do not receive significant training in science, and thus lack confidence when conducting preschool science activities. By providing parents and educators resources for approaching preschool science and math, which meet their specific needs, PEEP will help alleviate these challenges.
DATE: -
TEAM MEMBERS: Marisa Wolsky Kate Taylor
resource project Public Programs
President Obama announced in April 2013 that the Corporation for National and Community Service (CNCS) would launch a STEM AmeriCorps initiative to build student interest in STEM. A RFA is currently being prepared to be released in the late fall of 2013. This project will engage in quick response research to identify an evaluation and research agenda that can begin to inform the program launch. Thus, the timeframe for informing the initial stages of STEM AmeriCorps is relatively short, and the creation of an evaluation and research agenda is very timely. The products from the RAPID proposal are: (1) a review of the evaluation and research literature on the use of volunteers and/or mentors to build students' interest in STEM; (2) to convene a workshop to identify evaluation and research priorities to guide the initiative; and (3) a summary evaluation agenda that identifies promising directions along with the strength of evidence around key issues.
DATE: -
TEAM MEMBERS: Beth Gamse Alina Martinez
resource research Public Programs
Teachers’ and learners’ gestures while giving explanations in mathematics can be categorized into three types, revealing their cognitive nature and communicative purpose: pointing reflects a grounding in the physical environment, representational gestures reveal mental simulations of action and perception, and metaphoric gestures reveal conceptual metaphors grounded in the physical human experience. Informal educators should reflect on their own gestures and those of learners, considering what they may contribute to greater learner understanding.
DATE:
TEAM MEMBERS: Suzanne Perin
resource project Public Programs
This CRPA award addresses the issue of multidisciplinary science and the public's awareness of the ideas. The PIs believe that the prevalence of multidisciplinary science is high and growing fast. Thus, the public and particularly the younger generations need to understand these concepts and to begin thinking in those terms. Thus, they will derive hands-on modules for three age groups that are age appropriate. The project team includes 7 NSF funded researchers who do multidiscipline-based research in biology, mathematics and engineering. These modules will be tested at the Boy and Girls Club of Dane County prior to being exhibited at the Madison Children's Museum and the Aldo Leopold Nature Center. Further, the local PBS TV station (WPT) will air some of the demonstrations giving the project more visibility and impact. Each set of modules designed for the three age groups shall be evaluated separately using age specific goals and objectives. The project is a collaboration between 7 scientists and engineers, the Boys and Girls Club of Dane County, the Aldo Leopold Nature Center, the Madison Children's Museum, and the Wisconsin Institutes of Discovery of the University of Wisconsin.
DATE: -
TEAM MEMBERS: Douglas Weibel
resource project Public Programs
Stennis Space Center (SSC) Office of Education and Visitors Center provided relevant education activities and experiences for teachers, students, and the general public. Activities included partnerships with INFINITY Science Center, 4-H of Mississippi, the Boys & Girls Club of America, development and delivery of educator professional development workshops that meet national curriculum standards; inquiry-based activities that emphasized the International Space Station, robotics, aeronautics, and propulsion testing; and development and installation of an interactive exhibit at the Infinity Science Center. The opening of the Infinity Science Center at Stennis Space Center in April 2012 allowed a new opportunity for SSC to partner and expand NASA’s outreach. A commercial-grade playground was professionally installed at the Infinity Science Center, along with OSHA-approved safety matting. The goal of the project was to utilize a commercially available playground and add graphics and quiz-based activities modifications enabling young visitors to INFINITY at NASA Stennis Space Center, the official visitor center for Stennis Space Center, to have an interactive, yet educational, experience.
DATE: -
TEAM MEMBERS: Joy Smith
resource project Media and Technology
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
DATE: -
TEAM MEMBERS: Lisa Gugenheim
resource project Public Programs
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.
DATE:
TEAM MEMBERS: Northwestern University Maggie Waldron Reed Stevens Kemi Jona
resource research Public Programs
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
DATE:
TEAM MEMBERS: Roxanne Hughes