The theory of evolution by natural selection has revolutionized the biological sciences yet remains confusing and controversial to the public at large. This study explored how a particular segment of the public - visitors to a natural history museum - reason about evolution in the context of an interactive cladogram, or evolutionary tree. The participants were 49 children aged four to twelve and one accompanying parent. Together, they completed five activities using a touch-screen display of the phylogenetic relations among the 19 orders of mammals. Across activities, participants revealed
The study aims to characterize contextual learning during class visits to science and natural history museums. Based on previous studies, we assumed that “outdoor” learning is different from classroom-based learning, and free choice learning in the museums enhances the expression of learning in personal context. We studied about 750 students participating in class visits at four museums, focusing on the levels of choice provided through the activity. The museums were of different sizes, locations, visitor number, and foci. A descriptive-interpretative approach was adopted, with data sources
The article offers tips for early childhood educators on planning and implementing field experiences for young learners in natural history museums. It cites that providing children with access to nature could build their science literacy. Moreover, it emphasizes the importance of intrinsic motivation and recommends that teachers should focus on children's interests and provide them the time to relax. Teachers should also encourage active learning and ensure to make the visit memorable.
This article describes an initial attempt to find out students’ perceptions of class visits to natural history museums, with regard to the museum’s role as a place for intellectual and social experience. The study followed up approximately 500 Grades 6–8 students who visited four museums of different sizes, locations and foci. Data sources included the Museum Constructivist Learning Environment Survey (M-CLES), which was adapted from Constructivist Learning Environment Survey, an open-ended question and semi-structured interviews with 50 students. The three instruments highlighted some
America's adult populace has failed to keep pace with the rapid inundation of science-centric knowledge affecting nearly every facet of personal, familial, and communal life. With three out of eveiy four American adults considered scientifically illiterate, adult civic science literacy (CSL) has reached alarmingly low levels. The purpose of this research is to determine if the CSL of adults can be elevated through a renewed citizen science paradigm (RCSP)-incorporating nonformal outdoor adult education and structured experiential learning-in which volunteers conduct scientific research in an
This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with National Science Education Standards (NSES) (1996) and A Framework for K-12 Science Education: Practices, Crosscutting Concepts and Core Ideas (2011). The model has since been used in other university courses and professional development workshops for elementary, middle school, and high school teachers. Learners experience the
DATE:
TEAM MEMBERS:
Barbara SpectorRuth BurkettCyndy Leard
In this metalogue we build on the arguments presented by Puvirajah, Verma and Webb to discuss the nature of authentic science learning experiences in context of collaborations between schools and out-of-school time settings. We discuss the role of stakeholders in creating collaborative science learning practices and affordances of out of school time and formal science learning contexts. We contend that authentic science learning experiences are those where science learning happens within a social milieu and advocate for true collaborations between schools and informal settings in ways that
In this paper we report on teachers' and students' participation in authentic science research in out of school time science clubs at elementary schools. In the program four to five teachers worked alongside practicing scientists as part of their research groups. Each teacher facilitated a club with 10-15 students who, by extension, were members of the scientists' research groups. Over the 3 years of the project nearly 30 teachers and over 500 children participated in the clubs. In this paper we present a case study of teachers and children who worked with an analytic chemist at a major
Mueller, Tippins, and Bryan's contrast of the current limitations of science education with the potential virtues of citizen science provides an important theoretical perspective about the future of democratized science and K-12 education. However, the authors fail to adequately address the existing barriers and constraints to moving community-based science into the classroom. We contend that for these science partnerships to be successful, teachers, researchers, and other program designers must reexamine questions about traditional science education and citizen-science programs and attend to
This paper is birthed from my lifelong experiences as student, teacher, administrator, and researcher in urban science classrooms. This includes my years as a minority student in biology, chemistry, and physics classrooms, 10 years as science teacher and high school science department chair, 5-years conducting research on youth experiences in urban science classrooms, and current work in preparing science teachers for teaching in urban schools. These experiences afford me both emic and etic lenses through which to view urban science classrooms and urban youth communities. This paper, both
This report summarizes an extensive review of the literature on assessment of learning in such informal settings as after-school programs, museums and science centers, community-based organizations, and online communities. In addition, we convened three expert meetings involving a total of 25 participants to discuss key issues, identify successful approaches and outstanding challenges, and review summaries of prior meetings in the series. Our aim is twofold: first, to offer to those who design and assess informal learning programs a model of good assessment practice, a toolkit of methods and
DATE:
TEAM MEMBERS:
Jay LemkeRobert LecusayMike ColeVera Michalchik
In supporting education research from early childhood learning to doctoral work and beyond, EHR stimulates evidence-based innovation in teaching, instructional tools, curricula and programs. NSF-funded work in these areas has improved learning and achievement, developed more effective teaching models, and prepared a more globally competitive and diverse U.S. STEM workforce.