Skip to main content

Community Repository Search Results

resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Museum and Science Center Programs
There is a growing need for citizens to be able to work with data and consider how data is represented. This work employs a design, make, play framework to create data modeling learning experiences for young children and their caregivers in an informal setting. The project develops and tests a curriculum for a workshop series for 5-8 year old children to engage them in playful exploration of data modeling. Children engage in data collection, data representation, and data analysis by drawing on their own experiences of museum exhibitions. The curriculum supports developing children's interest and engagement with data science and data literacy, which are foundational knowledge for a range of STEM careers and disciplines. This project advances efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM).

The project is grounded in a theoretical framework for young children's learning that focus on playful exploration, design, and building on children's own experiences and questions. The research examines how the curriculum needs to be designed to support families in data modeling, foster engagement in data modeling by both younger (ages 5-6) and older (ages 7-8) children, and provide evidence of active approaches to learning about STEM. The design and development project tests and investigates the materials using a design-based research framework. Children who participate in the workshop series should increase their confidence in solving problems, taking initiative, and drawing on available resources to pursue their own questions and respond to novel challenges. Data collected includes interviews with participants, artifacts of children's work throughout the series, and an observational instrument to document families' problem solving, persistence, and engagement with data science concepts.
DATE: -
TEAM MEMBERS: Katherine McMillan Culp ChangChia James Liu Janella Watson Delia Meza Kaitlin Donnelly Susan Letourneau Laycca Umer Catherine Cramer Stephen Uzzo John Archacki
resource evaluation Public Programs
Designing Our World (DOW) was a four-year NSF-funded initiative in which the Oregon Museum of Science and Industry (OMSI) sought to promote girls’ pursuit of engineering careers through community-based programming, exhibition development, and identity research. The overarching aim of DOW was to engage girls ages 9–14 with experiences that illuminate the social, personally relevant, and altruistic nature of engineering. In addition to programming for girls, the project also included workshops for parents/caregivers, professional development for staff from community partners; and an exhibition
DATE:
TEAM MEMBERS: Cecilia Garibay
resource project Public Programs
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.

Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
DATE: -
resource project Public Programs
The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.

SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.
DATE: -
TEAM MEMBERS: Julie Yu
resource evaluation Public Programs
This summative evaluation report details the Broad Implementation of the Living Laboratory model--an initiative to promote partnership between museums and cognitive science researchers in order to promote professional learning and involve the public in scientific research. The evaluation investigated the extent of the dissemination effort’s depth, spread, sustainability, and shift in ownership, based on Coburn’s criteria for scale-up (2003). Evaluators collected data from surveys, interviews, focus groups, document review, and observations. Findings about depth suggest that adopters fully
DATE:
resource project Media and Technology
The Northwest Passage Project (NPP) is a collaborative effort between the University of Rhode Island (URI), Inner Space Center (ISC), Graduate School of Oceanography (GSO), the film company David Clark Inc., and several other partners, including six Minority Serving Institutions (MSIs) and three informal science education institutions. The project centers on a research expedition into the Arctic's Northwest Passage, which will engage intergenerational cohorts of high school, undergraduate, and graduate students in hands-on research aboard the U.S. tall ship SSV Oliver Hazard Perry (OHP). During the expedition, a professional film crew will produce a two-hour documentary focused on the NPP's innovative model of interdisciplinary informal STEM (science, technology, engineering, and mathematics) learning and highlight the expedition's research, participants, and the sociological issues related to the changing Arctic environment. Because the Canadian Arctic is remote and costly to access, the project will maximize NSF's investment by giving broad audiences access to the science and excitement of the expedition through the documentary. In addition, this informal science learning opportunity will not only engage students with scientists in authentic research, but also train the students to deliver daily live broadcasts from sea to three well-established U.S. informal science education institutions: the Smithsonian National Museum of Natural History (NMNH), the Exploratorium, and the Alaska Sea Life Center (ASLC). The daily broadcasts will also reach the public in real time via the project's interactive website, providing the opportunity for people to post questions to the scientists and students onboard the ship. The NPP has great potential to benefit society by enhancing awareness of the changing Arctic's ecosystems and increasing science literacy. The hands-on research experiences will enhance the college readiness of the participating high school students and encourage the undergraduate students from the six partner MSIs to consider a graduate course of study and/or pursue STEM careers. The graduate students will also be more career-ready, as they gain public communication and leadership skills necessary for 21st century scientists. The Northwest Passage Project is designed to advance knowledge and understanding within the practice of informal science education, as well as in the field of Arctic science. The project goals include: increasing public awareness and understanding of the changing Arctic ecosystem; increase public understanding about Arctic research and the scientific process; increase the Informal Science Education (ISE) field's understanding of the public's learning process when engaged in live interactions with scientists and student 'science communicators'; increase the ISE field's understanding of the value of immersive science experiences and impact on students from underserved and underrepresented populations; and to build or extend the capacity of ISE institutions to make connections between polar scientists, students, journalists and the public. The NPP is creative in that it combines the engagement of students in field-based scientific research, live broadcasts from sea to ISE institutions, and the production of a full-scale documentary for public audiences. A potentially transformative component to the ISE activities involves six Minority Serving Institution partners--Florida International University; University of Illinois, Chicago; California State University, Channel Islands; Texas State University; Virginia Commonwealth University and City College of New York--whose students will have the opportunity for a life-changing experience that may tip the scale toward their interest in STEM careers. Each of these students will develop news stories, host screenings of the film at their respective campuses, and share their experiences with peers, providing visual role models for other underrepresented students, who may never have thought themselves capable of becoming a scientist or science communicator. An additional project goal is to enhance the capacity and infrastructure of the three ISE partner institutions so that they may receive live broadcasts from the Inner Space Center in the future, beyond the funding period of the project. People, Places & Design Research will conduct the project's front-end and formative evaluation; MEM & Associates will conduct the summative evaluation. Some of the key evaluation questions will be: * Have ISE and MSI institution public visitors, who view either the live broadcasts or the documentary film (or both), become more aware of the changing Arctic ecosystem and the importance of scientific research in the Arctic? * What is the relative impact of the live broadcasts compared to the finished documentary, and the strengths and weakness of the respective media in translating the on-board experience? * Does a real environmental and social context for scientific evidence stimulate audiences to become more interested in the role of science/STEM? * Have students gained leadership skills and the ability to communicate science to their peers? * Have students increased their motivation and interest in pursuing STEM careers? This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Gail Scowcroft David Clark Brice Loose Dwight Coleman
resource project Public Programs
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
DATE: -
TEAM MEMBERS: Robin Meisner David Sobel Susan Letourneau Jessica Neuwirth Valerie Haggerty-Silva Chris Sancomb Camellia Sanford-Dolly Claire Quimby
resource research Media and Technology
STEM Pathways is a collaboration between five Minnesota informal STEM (science, technology, engineering, and mathematics) education organizations—The Bakken Museum, Bell Museum of Natural History, Minnesota Zoo, STARBASE Minnesota, and The Works Museum—working with Minneapolis Public Schools (MPS) and advised by the Minnesota Department of Education. STEM Pathways (logo shown in Figure 1) aims to provide a deliberate and connected series of meaningful in-school and out-of-school STEM learning experiences to strengthen outcomes for students, build the foundation for a local ecosystem of STEM
DATE:
TEAM MEMBERS: Steven Walvig Beth Murphy Melanie Peters Abby Moore
resource project Public Programs
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?

The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.

The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
DATE: -
TEAM MEMBERS: Nancy Walsh Kathleen Tinworth Andrea Giron Ka Yu Lynn Dierking Megan John Polly Andrews John H Falk
resource research Public Programs
Imagine two seventh-grade students from communities of color and low socioeconomic backgrounds, of whom at least one is an English-language learner1 (ELL). Both are likely disenfranchised from avenues to success and the ability to see themselves as capable of great things. These students attend school in the largest school districts in Colorado. As part of their seventh-grade science class, they participate in a program called Urban Advantage Metro Denver (UA Denver), which provides them the opportunity to work on a self-selected science project. Their projects are inspired by field trips to
DATE:
TEAM MEMBERS: Eric Godoy Patricia Kincaid
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project is exploring and identifying successful, cross-institutional approaches to using maker activities to engage members of communities of color (with a focus on family groups) in STEM activities.
DATE:
TEAM MEMBERS: Marjorie Bequette