This report summarizes the evaluation results from the NSF funded Eight-Legged Encounters family event that uses arachnids as a hook to draw public interests towards science. The event involves informative and hands-on activities that bridge the gap between academia and the public, extending knowledge about arachnids to children and their parents. The Bureau of Sociological Research (BOSR) at UNL was contracted to evaluate Eight-Legged Encounters. The data collection for this report involves five events and three audiences: adults, children, and the volunteers of the event. Two events were
DATE:
TEAM MEMBERS:
University of Nebraska LincolnEileen Hebets
This paper focuses on the ways students can construct scientific explanations and arguments as part of scientific inquiry. Berland and Reiser synthesize understandings from philosophy, science, and logic in order to interpret students’ arguments during a unit on invasive species in the Great Lakes.
In this paper, Anderman and colleagues examine the skills adolescents need in order to learn science effectively. They note that many negative experiences associated with science learning could be avoided if educators were more aware of the abilities of adolescents and the types of environments that foster particular abilities. They offer seven recommendations to practitioners.
When engaging in inquiry, learners find it difficult to control variables, design appropriate experiments, and maintain continuity across inquiry sessions. To support learners, researchers developed an inquiry task that promoted record keeping. The aim was to highlight the role that record keeping can play in metacognition and, ultimately, in successful inquiry.
Some say that if we could dismantle negative stereotypes of scientists, minority students would be more likely to consider careers in STEM. But precisely what views do minority students hold? In this study, researchers examined the perceptions of 133 Native American students by analysing students’ drawings of scientists and their accompanying written explanations.
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. This project seeks to improve public engagement in climate communication by broadcast meteorologists, using scientific methods to identify probable causes for their skepticism and/or reticence, and to test the efficacy of proposed solutions.
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. The Lost Ladybug Project (LLP) is a Cornell University citizen science project that connects science to education by using ladybugs to teach non-scientists concepts of biodiversity, invasive species, and conservation.
Participants in Kitchen Science Investigators, an afterschool program for middle school students, learn science through cooking, baking, and experimenting with recipes. In-depth case studies analyzed how and why girls begin to scientize, or see their worlds through a scientific lens, and how the program structure supported this shift.
In this study, the researchers investigated opportunities and challenges English language learners (ELLs) faced while learning the scientific practices of argumentation and communication of findings (NGSS practices 7 and 8; NGSS Lead States, 2013). Specifically, they asked how the teacher engaged ELLs in argumentation and communication and how the ELLs actually used these practices.
In order to broaden the conceptualizations of argument in science education, Bricker and Bell draw from diverse fields: the sociology of science, the learning sciences, and cognitive science to help practitioners think of new ways to bring argumentation into learning spaces while expanding what counts as scientific argument.
Argumentation in science involves the development, justification, and defence of evidence-based claims, together with the reasoned dispute of counterclaims. This process is the foundation for all scientific endeavours. Supporting the development of argumentation skills, therefore, is a key part of science education. Laboratory work is also as an essential part of science. Combining these two activities, therefore, would seem to be worthwhile. In this study, researchers explored the impact of three different lab-based tasks on the nature and quality of any subsequent argumentation.
When designing programs for science learning, it is important to consider that children's experiences with science begin years before they encounter science in the classroom. Children's developing understanding of science begins in their everyday activities and conversations about the natural and technical world. Children develop "scientific literacy" as they begin to learn the language of science (e.g., concepts such as "gravity" or "metamorphosis"), the kind of causal explanations that are used in scientific theories (e.g., the day-night cycle results from the rotation of the earth), and the