The goal of our project is to develop strategies that effectively engage autistic adolescents in informal STEM learning opportunities that promote the self-efficacy and interest in STEM careers that will empower them to seek out career opportunities in STEM fields.
The research aims are to:
1. Identify evidence-based strategies to engage autistic youth in informal STEM learning opportunities that are well matched to their attentional profiles:
Hypothesis 1: Pedagogical strategies vary in how engaging they are for people with diverse attentional profiles; people with more focused
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Since 2006, the National High Magnetic Field Laboratory (MagLab) through the Center for Integrating Research and Learning (CIRL) has offered a SciGirls Summer Camp to introduce middle school girls to various fields of science. Code: SciGirls was created in 2017 to increase the engagement in computer science studies and career paths for girls. This consistent commitment to girls in STEM led the SciGirls creators at Twin Cities Public Television (TPT) to invite CIRL to be a partner with them. In the summer of 2021, CIRL & TPT
The pilot and feasibility study will develop instructional workshops for an adult population of quilters to introduce them to computational thinking. By leveraging pre-existing social structures, skill sets, and engagement in quilting, the researchers hope to help participants develop computer science and computational thinking knowledge and skills.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
New York City is a leader in Open Data initiatives, and has a large and diverse population. This project studies informal data science learning at workshops and trainings associated with NYC’s open data ecosystem.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Makerspaces and making-related programs are often inaccessible, unaffordable, or simply not available to underserved youth. This three-year, Innovations in Development project involves partnership with four Recreation Centers (two each in Baltimore and Pittsburgh) to (1) train educators in equity-oriented approaches to making, (2) create four learning hubs, (3) develop and test equity-based curricula in each space, and (4) establish a replicable Localization Toolkit for future implementation in other communities.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Today’s young people have a personal stake in their ability to function with data. Future job prospects might hinge on their ability to participate in the new data economy. But equally, young people are themselves the subjects of data. The datafication of young people’s lives leads to profound questions about childhood, technology, and the equity of access to STEM learning around data, one of which is this: How might young people be empowered in a data-centric world?
DATE:
TEAM MEMBERS:
Leanne BowlerMark RosinIrene Lopatovska
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
The Ice Worlds media project will inspire millions of children and adults to gain new knowledge about polar environments, the planet’s climate, and humanity’s place within Earth’s complex systems—supporting an informed, STEM literate citizenry. Featuring the NSF-funded THOR expedition to Thwaites glacier, along with contributions of many NSF-supported researchers worldwide, Ice Worlds will share the importance of investments in STEM with audiences in giant screen theaters, on television, online, and in other informal settings. Primary project deliverables include a giant screen film, a filmmaking workshop for Native American middle school students that will result in a documentary, a climate storytelling professional development program for informal educators, and a knowledge-building summative evaluation. The project’s largest target audience is middle school learners (ages 11-14); specific activities are designed for Native American youth and informal science practitioners. Innovative outreach will engage youth underserved in science inspiring a new generation of scientists and investigative thinkers. The project’s professional development programs will build the capacity of informal educators to engage communities and communicate science. The Ice Worlds project is a collaboration among media producers Giant Screen Films, Natural History New Zealand, PBS, and Academy Award nominated film directors (Yes/No Productions). Additional collaborators include Northwestern University, The American Indian Science and Engineering Society, the Native American Journalism Association, a group of museum and science center partners, and a team of advisors including scientific and Indigenous experts associated with the NSF-funded Study of Environmental Arctic Change initiative.
The goals of the project are: 1) to increase public understanding of the processes and consequences of environmental change in polar ecosystems, 2) to explore the effectiveness of the giant screen format to impart knowledge, inspire motivation and caring for nature, 3) to improve middle schoolers’ interest, confidence and engagement in STEM topics and pursuits—broadly and through a specific program for Native American youth, and 4) to build informal educators’ capacity to share stories of climate change in their communities. The main evaluation questions are 1) to what extent does the Ice World film affect learning, engagement, and motivation around STEM pursuits and environmental problem solving 2) what is the added value of companion media for youth’s giant screen learning over short and longer term, and 3) what are the impacts of the culturally based Native American youth workshops.
The evaluation work will involve a Native American youth advisory panel and a panel of science center practitioners in the giant screen film’s development and evaluation process. Formative evaluation of the film will involve recruiting youth from diverse backgrounds, including representation of Native youth, to see the film in the giant screen theater of a partner site. Post viewing surveys and group discussions will explore their experience of the film with respect to engagement, learning, evoking spatial presence, and motivational impact. A summative evaluation of the completed film will assess its immediate and longer term impacts. Statistical analyses will be conducted on all quantitative data generated from the evaluation, including a comparison of pre and post knowledge scores. An evaluation of the Tribal Youth Media program will include a significant period of formative evaluation and community engagement to align activities to the needs and interests of participating students. Culturally appropriate measures, qualitative methods and frameworks will be used to assess the learning impacts. Data will be analyzed to determine learning impacts of the workshop on youth participants as well as mentors and other stakeholder participants. Evaluation of the community climate storytelling professional development component will include lessons learned and recommendations for implementation.
This project investigates long-term human-robot interaction outside of controlled laboratory settings to better understand how the introduction of robots and the development of socially-aware behaviors work to transform the spaces of everyday life, including how spaces are planned and managed, used, and experienced. Focusing on tour-guiding robots in two museums, the research will produce nuanced insights into the challenges and opportunities that arise as social robots are integrated into new spaces to better inform future design, planning, and decision-making. It brings together researchers from human geography, robotics, and art to think beyond disciplinary boundaries about the possible futures of human-robot co-existence, sociality, and collaboration. Broader impacts of the project will include increased accessibility and engagement at two partner museums, interdisciplinary research opportunities for both undergraduate and graduate students, a short video series about the current state of robotic technology to be offered as a free educational resource, and public art exhibitions reflecting on human-robot interactions. This project will be of interest to scholars of Science and Technology Studies, Human Robotics Interaction (HRI), and human geography as well as museum administrators, educators and the general public.
This interdisciplinary project brings together Science and Technology Studies, Human Robotics Interaction (HRI), and human geography to explore the production of social space through emerging forms of HRI. The project broadly asks: How does the deployment of social robots influence the production of social space—including the functions, meanings, practices, and experiences of particular spaces? The project is based on long-term ethnographic observation of the development and deployment of tour-guiding robots in an art museum and an earth science museum. A social roboticist will develop a socially-aware navigation system to add nuance to the robots’ socio-spatial behavior. A digital artist will produce digital representations of the interactions that take place in the museum, using the robot’s own sensor data and other forms of motion capture. A human geographer will conduct interviews with museum visitors and staff as well as ethnographic observation of the tour-guiding robots and of the roboticists as they develop the navigation system. They will produce an ethnographic analysis of the robots’ roles in the organization of the museums, everyday practices of museum staff and visitors, and the differential experiences of the museum space. The intellectual merits of the project consist of contributions at the intersections of STS, robotics, and human geography examining the value of ethnographic research for HRI, the development of socially-aware navigation systems, the value of a socio-spatial analytic for understanding emerging forms of robotics, and the role of robots within evolving digital geographies.
This project is jointly funded by the Science and Technology Studies program in SBE and Advancing Informal STEM Learning (AISL) Program in EHR.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Research shows that Black girls and women, regardless of their academic achievements and STEM interests, often encounter academic under-preparation, social isolation, exclusion, and race-gender discrimination that negatively impacts their ongoing engagement and retention in STEM. This project will provide innovative, culturally relevant learning environments to middle and high school Black girls to counter these negative trends. Using hands-on coding and robotics activities, project participants will develop positive attitudes toward science, technology, engineering, and mathematics (STEM). The project emphasizes peer-mentoring by providing opportunities for Black female high school (assistant coaches) and Black college students (coaches) to serve as counselors and mentors to participants. Additionally, engineers, scientists, and executives from STEM industries will serve as mentors and share their experiences to broaden participants’ STEM career aspirations. The project is a three-year collaborative effort between the University of California Davis C-STEM Center, the Umoja Community Education Foundation, and the 66 affiliated California community colleges, industry partners, and school districts in California. Over three years, nearly 2,000 females will participate in the project.
Learning environments for Black girls and women led by other Black girls and women are referred to as “counterspaces” where they are free to engage in STEM in ways that value their identities while promoting STEM engagement, interests, and career aspirations. The project’s curriculum will follow a research-based, culturally relevant multi-tiered mentoring approach. The curriculum is designed to develop participants’ STEM content knowledge, critical thinking, and logical reasoning capabilities through meaningful connections to real-life applications using hands-on coding and robotics. A mixed-method longitudinal study will examine the impact on participants’ STEM outcomes, emphasizing contributing new knowledge on the viability of multi-tiered, culturally relevant mentoring for increasing equity in informal STEM learning (ISL). The program's effectiveness will be evaluated using longitudinal assessments of mathematics standards, computer science and robotics conceptual knowledge, logical and critical thinking skills, STEM school achievements, interests and attitudes toward STEM subjects, advanced STEM course-taking, involvement in other ISL opportunities, and leadership in STEM in one’s school/university and community. The project will test a locally based informal learning model with projects hosted by other K-12 and college partners.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a series of mobile apps to guide families through sequenced sets of videos and hands-on activities. To support families at home it would also develop a new library model to build librarians' computational thinking content knowledge and self-efficacy so they can support parents' efforts with their children. Computational thinking is a an increasingly critical skill for learning and success in the workforce. It includes the ability to identify problems, brainstorm and generate solutions and processes that can be communicated and followed by computers or humans. There are few projects that introduce computational thinking to young children. Very little research has been done on the ways that parents can facilitate children's engagement in CT skills. And developing a model that trains and supports librarians to become virtual coaches of parents as they engage with their children in CT, will leverage and build the expertise of librarians. The project's target audience includes parents and children living in rural areas where access to CT learning may be very limited. Project partners include the EDC, a major research organization, the American Library Association, and BUILD, a national association that promotes collaborations across library, kindergarten readiness, and public media programming.
The formative research study asks: 1) What supports do parents of preschoolers in rural communities need in order to effectively engage in CT with their children at home? and 2) How can libraries in rural communities support joint CT exploration in family homes? The summative research study asks: 3) how can an intervention that combines media resources, mobile technology, and library supports foster sustained joint parent/child engagement and positive attitudes around CT? Researchers will develop a parent survey, adapting several scales from previously developed instruments that ask parents to report on children's use of CT-related vocabulary and CT-related attitudes and dispositions. Survey scales will assess librarians' attitudes towards CT, as well as their self-efficacy in supporting parents in CT in a virtual environment. During the formative study, EDC will pilot-test survey scales with 30 parents and 6 librarians in rural MS and KY. Analyses will be primarily qualitative and will be geared toward producing rapid feedback for the development team. Quantitative analyses will be used on parent app use, using both time query and back-end data, exploring factors associated with time spent using apps. The summative study will evaluate how the new media resources and mobile technology, in combination with the library virtual implementation model, support families' joint engagement with CT, and positive attitudes around CT. The researchers will recruit 125 low-income families with 4- to 5-year-old children in rural MS and KY to participate in the study. They will randomly assign families within each library to the full intervention condition, including media resources, mobile technology, and library support delivered through the virtual implementation model, or the media and mobile-technology-only condition. This design will allow researchers to understand more fully the additional benefit of library support for rural families' sustained engagement, and conversely, see the comparative impact of a media- and mobile-technology only intervention, given that some families might not be able to access virtual or physical library support.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Tino NyaweloJohn MatthewsJordan GertonSarah Braden