Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.
The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Research shows that Black girls and women, regardless of their academic achievements and STEM interests, often encounter academic under-preparation, social isolation, exclusion, and race-gender discrimination that negatively impacts their ongoing engagement and retention in STEM. This project will provide innovative, culturally relevant learning environments to middle and high school Black girls to counter these negative trends. Using hands-on coding and robotics activities, project participants will develop positive attitudes toward science, technology, engineering, and mathematics (STEM). The project emphasizes peer-mentoring by providing opportunities for Black female high school (assistant coaches) and Black college students (coaches) to serve as counselors and mentors to participants. Additionally, engineers, scientists, and executives from STEM industries will serve as mentors and share their experiences to broaden participants’ STEM career aspirations. The project is a three-year collaborative effort between the University of California Davis C-STEM Center, the Umoja Community Education Foundation, and the 66 affiliated California community colleges, industry partners, and school districts in California. Over three years, nearly 2,000 females will participate in the project.
Learning environments for Black girls and women led by other Black girls and women are referred to as “counterspaces” where they are free to engage in STEM in ways that value their identities while promoting STEM engagement, interests, and career aspirations. The project’s curriculum will follow a research-based, culturally relevant multi-tiered mentoring approach. The curriculum is designed to develop participants’ STEM content knowledge, critical thinking, and logical reasoning capabilities through meaningful connections to real-life applications using hands-on coding and robotics. A mixed-method longitudinal study will examine the impact on participants’ STEM outcomes, emphasizing contributing new knowledge on the viability of multi-tiered, culturally relevant mentoring for increasing equity in informal STEM learning (ISL). The program's effectiveness will be evaluated using longitudinal assessments of mathematics standards, computer science and robotics conceptual knowledge, logical and critical thinking skills, STEM school achievements, interests and attitudes toward STEM subjects, advanced STEM course-taking, involvement in other ISL opportunities, and leadership in STEM in one’s school/university and community. The project will test a locally based informal learning model with projects hosted by other K-12 and college partners.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
We explored the potential of science to facilitate social inclusion with teenagers who had interrupted their studies before the terms set for compulsory education. The project was carried out from 2014 to 2018 within SISSA (International School for Advanced Studies), a scientific and higher education institution in physics, mathematics and neurosciences, and was focused on the production of video games using Scratch. The outcomes are encouraging: through active engagement, the participants have succeeded in completing complex projects, taking responsibilities and interacting with people
DATE:
TEAM MEMBERS:
Simona CerratoFrancesca RizzatoLucia TealdiElena Canel
This paper contributes a theoretical framework informed by historical, philosophical and ethnographic studies of science practice to argue that data should be considered to be actively produced, rather than passively collected. We further argue that traditional school science laboratory investigations misconstrue the nature of data and overly constrain student agency in their production. We use our “Data Production” framework to analyze activity of and interviews with high school students who created data using sensors and software in a ninth-grade integrated science class. To understand the
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.
The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
In partnership with the Digital NEST, students engage in near to peer learning with a technical tool for the benefit of a nonprofit that tackles issues the youth are passionate about. Youth build first from an 'internal’ Impactathon, to planning and developing an additional Impactathon for a local partner and then traveling to another partner elsewhere in the state. Participants range from 14 to 24 from UC Santa Cruz students to middle schoolers from Watsonville and Salinas.
This poster was presented at the 2019 AISL Principal Investigators Meeting.
This exploratory learning research and design project will study how to use emerging technologies to help document practices in maker-based learning experiences. Despite its established potential for consolidating learning and sense-making, project documentation is often overlooked, not prioritized or seen as burdensome and therefore not integrated into the learning experiences. The project team seeks to understand and address with practice partners the barriers to documentation by systematically exploring how to physically embed and incorporate smart tools and documentation practices into learning environments, specifically creative hands-on learning spaces, like makerspaces. The goal is to understand how to scaffold learners to become more aware, reflective and attentive to their progress towards learning outcomes by embedding supportive tools physically in space as the actions unfold. Making and maker-based learning experiences offer tremendous opportunities to more fully engage diverse learners in STEM education and build a workforce prepared for innovation. Documentation of these learning experiences, both as an authentic practice that professionals engage in as well as an assessment practice for instruction, is often not supported. The project will create open source documentation for solutions and develop supporting case studies, web resources and guides to facilitate easy uptake and adoption of promising approaches.
This proposal will make significant research contributions in three ways: (1) develop and iteratively test a suite of embedded "smart" tools designed to scaffold, manage and trace process documentation practices; (2) study the integration of these tools in formal and informal activities and programs settings and characterize their influence on instruction and the assessment of learning outcomes; (3) establish a set of rubrics based on learner data streams to aid instruction and mark learner progress. Improving documentation practices and the assessment of learning outcomes will advance making as a core STEM educational activity. Through a better understanding of why and how to place networked documentation tools sensitive to space, time and context cues, the threshold for enactment and scaffolded usage can be lowered in a broader range of settings. Ultimately, this exploratory project will not only develop an integrated set of situated documentation tools, but also help us develop hypotheses for how documentation as a mediating process productively supports learning.
The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The Multimedia Immersion (MI) project is will develop, pilot, and evaluate a nine-week STEM-rich multimedia production course for high school students. MI will make important contributions to the field through its efforts to design and evaluate the promises and challenges of a nine-week multimedia curriculum in multiple urban high schools. The MI course will engage teams of students to develop a personally and socially relevant storyline that guides their use of accessible audio and video technologies to create a five-minute animated video. To develop student STEM experience and provide technical support, the project will provide guidance and learning experiences in engineering (e.g., criteria, constraints, optimization, tradeoffs), science (e.g. sound, light, energy, mechanics) and multimedia technologies (e.g., computer based audio production, video editing and visualizations through animatics (i.e., shooting a succession of storyboards with a soundtrack). animatics).
Because the curriculum situates engineering and science learning in the context of multimedia production, there are natural synergies with several existing high school courses including engineering design, audio/video media production, and multimedia technology. Although these courses are typically electives in high school, developing a 5-minute animated short on a topic of interest may encourage girls and students from underrepresented groups to select this course over other electives. MI will impact 10 teachers and approximately 250 high school students per year. The project will result in the following resources: nine-week curricular unit (multimedia, science, engineering); assessments to monitor student learning of science, engineering and technology (design logs); and research on changes in student knowledge, interest, and a nine-week curricular unit (multimedia, science, engineering). Project resources will be disseminated to teachers, researchers, and curriculum and professional development providers via conference presentations, publications, and online webinars.
The MI project builds on student familiarity and interest in music, video and technology to promote an: (1) understanding of engineering design and physics and an (2) an appreciation of the fundamental role of STEM in popular culture. Project evaluation will be conducted using student surveys and an examination of work products in conjunction with implementation challenges and successes to generate evidence for the feasibility and utility of a high school multimedia course that explicitly addresses science and engineering learning. Project evaluation will use student design logs as a window into student design processes and conceptual understanding. Student design logs are an essential feature of MI curriculum design. With an appropriate structure, these design logs can inform teaching, afford an opportunity for students to reflect on their own work, and provide evidence of student thinking and learning for assessment purposes. Using student design logs as a window into students? design process and conceptual understanding is an important contribution to the engineering education community which has few options for measuring student knowledge in ways that are consistent with the hands-on, iterative nature of the design process.
This pilot study will examine the effectiveness of an innovative applied social change, community and technology based program on marginalized youths' access, interest, efficacy and motivation to learn and engage in digital technology applications. Using stratified near-peer and peer-to-peer mentoring approaches, the pilot builds on extant literature that indicates that peer-supported hands-on mentoring and experiences can alleviate some barriers to youth engagement in digital technologies, particularly among underrepresented groups. In this project, undergraduate students will mentor and work collaboratively with high school youth primarily of Hispanic descent and community-based organizations to develop creative technology-based solutions to address social issues and challenges within their local communities, culminating in events called Impactathons. These community-hosted local and state-wide events set this pilot project apart from similar work in the field. The Impactathons not only provide a space for intellectual discourse and problem-solving among the undergraduate-youth-community partners but the Impactathons will also codify expertise from scientists, social scientists, technologists, community leaders, and other stakeholders to develop technology-based solutions with real world application. If successful, a distal outcome will be increased youth interest in digital technologies and related fields. In the short term, favorable findings will provide preliminary evidence of success and lay the foundation for a more extensive study in the future.
This pilot project is a collaboration between the Everett Program, a student-led program for Technology and Social Change at the University of California Santa Cruz - a Hispanic Serving Institution - and the Digital NEST, a non-profit, high-tech youth career development and collaboration space for young people ages 14-24. Through this partnership and other recruitment efforts, an estimated 70-90 individuals will participate in the Impactathon pilot program over two years. Nearly two-thirds of the participants are expected to be undergraduate students. They will receive extensive training in near-peer and peer-to-peer mentoring and serve as mentors for and co-innovation developers with the high school youth participants. The undergraduates and youth will partner with local community organizations to identify a local social challenge that can be addressed through a technology-based solution. The emergent challenges will vary and could span the spectrum of STEM and applied social science topics of interest. Working in informal contexts (i.e., afterschool. weekend), the undergraduate-youth-community partner teams will work collaboratively to develop practical technology-based solutions to real world challenges. The teams will convene three times per year, locally and statewide, at student and community led Impactathons to share their work and glean insights from other teams to refine their innovations. In parallel, the research team will examine the effectiveness of the Impactathon model in increasing the undergraduate and youths' interest, motivation, excitement, engagement and learning of digital technologies. In addition to the research, the formative and summative evaluations should provide valuable insights on the effectiveness of the model and its potential for expansion and replication.
The project is co-funded by the Advancing Informal STEM Learning (AISL) Program and STEM +C. The AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. STEM + C focuses on research and development of interdisciplinary and transdisciplinary approaches to the integration of computing within STEM teaching and learning for preK-12 students in both formal and informal settings.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.