Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Edward Price Sinem Siyahhan
resource research Public Programs
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Andrew Coy Foad Hamidi
resource research Public Programs
This paper attempts to reframe popular notions of “failure” as recently celebrated in the Maker Movement, Silicon Valley, and beyond. Building on Vossoughi et al.’s 2013 FabLearn publication describing how a focus on iterations/drafts can serve as an equity-oriented pedagogical move in afterschool tinkering contexts, we explore what it means for afterschool youth and educators to persist through unexpected challenges when using an iterative design process in their tinkering projects. More specifically, this paper describes: 1) how young women in a program geared toward increasing equitable
DATE:
TEAM MEMBERS: Jean Ryoo Nicole Bulalacao Linda Kekelis Emily McLeod Ben Henriquez
resource project Informal/Formal Connections
This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.

The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
DATE: -
TEAM MEMBERS: Edward Price Frank Gomez James Marshall Sinem Siyahhan James Kisiel Heather Macias Jessica Jensen Jasmine Nation Alexandria Hansen Myunghwan Shin
resource project Public Programs
The Clubhouse Network: A Global Community for Creativity and Achievement, a program of Boston's Museum of Science, will develop, pilot, and evaluate Light it Up! Engaging Young People in Digital Making Activities. Digital making activities combine design, computational thinking, and engineering practices that are all fundamental learning skills for the 21st century. Over the course of six months, the project team will develop a one-day, hands-on workshop that will give museum educators strategies to inspire a more diverse population of middle and high school-aged youth to consider educational and career pathways in STEM fields through engagement with local science centers. The workshop will be implemented twice with a group of 12 educators from regional museums. The museum will use tested evaluation tools to improve the quality and outcomes of the workshops. A successful prototype and evaluation will result in practices that can be adapted by other museums and cultural institutions to better reach young people with digital making activities.
DATE: -
TEAM MEMBERS: Gail Breslow
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Makerspaces and making-related programs are often inaccessible, unaffordable, or simply not available to underserved youth. This three-year, Innovations in Development project involves partnership with four Recreation Centers (two each in Baltimore and Pittsburgh) to (1) train educators in equity-oriented approaches to making, (2) create four learning hubs, (3) develop and test equity-based curricula in each space, and (4) establish a replicable Localization Toolkit for future implementation in other communities.
DATE:
TEAM MEMBERS: Andrew Coy Foad Hamidi
resource research Public Programs
Maker Education scholarship is accumulating increasingly complex understandings of the kinds of learning associated with maker practices along with principles and pedagogies that support such learning. However, even as large investments are being made to spread maker education, there is little understanding of how organizations that are intended targets of such investments learn to develop new maker related educational programs. Using the framework of Expansive Learning, focusing on organizational learning processes resulting in new and unfolding forms of activity, this paper begins to fill
DATE:
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

Making, which supports interest-driven skill-development and learning, has been recognized as having the potential to engage underserved youth in STEM. Makerspaces are community spaces that allow participants to create items using tools, such as 3-D printers, computer-aided design, and digital fabrication technologies. Makerspaces and making-related programs are often inaccessible, unaffordable, or simply not available to underserved youth. Digital Harbor will partner with recreation centers, two in Pittsburgh and two in Baltimore, to research, refine and implement an equity-based approach to making that will engage underserved youth aged 12-16 in making. The project will prepare out-of-school time (OST) educators to collaboratively develop culturally sensitive curricula with underserved youth to engage them in maker-based technology and computer science experiences. The project will (1) design a professional development program that will prepare and support local educators to collaboratively design and deliver localized, maker-based, STEM curricula; (2) research the impact of these programs on both educators' and youth's self-efficacy, creativity, and attitudes towards STEM; and (3) develop and evaluate an online Localization Toolkit that will prepare educators in makerspaces across the nation in using an equity-based approach to create localized content. The project will result in four new maker sites (two in Baltimore and two in Pittsburgh directly impact 4 sites (10 educators and 240 youth). The project will result several resources that will support the development and educational programs of other community sites. The resources will include the Localization Toolkit, Case Studies, Best Practices, and Research Study. The Localization Toolkit has the potential to strengthen infrastructure and capacity building in OST maker-based programs, as well as other informal and formal education programs using similar pedagogies and design principles.

The project will use a mixed-methods approach in researching the challenges and processes involved in establishing the four maker sites in Baltimore and Pittsburgh, the approaches and effectiveness of the professional development program on OST educators, and the impacts of the project of participation on the self-efficacy, creativity, and attitudes on participating youth and educators. The research study will apply several instruments and data collection sources to develop quantitative data, including youth attendance logs, the Upper Elementary and Middle/High School Student Attitudes toward STEM survey, a retrospective technology self-efficacy survey and pre-post surveys. In addition to project document review, the researchers will collect qualitative data through educator interviews, educator focus groups, and youth focus groups. Project research and resources will reach key audiences of learning scientists and OST educators through articles in peer-reviewed and practitioner journals, public events and professional conferences. These audiences will also be reached through the project website, which will share project resources. The project will reach OST sites across the country directly through dissemination partners, including the National Recreation and Parks Association, Association of Science and Technology Centers, and statewide out-of-school networks.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Foad Hamidi Andrew Coy
resource research Media and Technology
As the maker movement is increasingly adopted into K-12 schools, students are developing new competences in exploration and fabrication technologies. This study assesses learning with these technologies in K-12 makerspaces and FabLabs. Our study describes the iterative process of developing an assessment instrument for this new technological literacy, the Exploration and Fabrication Technologies Instrument, and presents findings from implementations at five schools in three countries. Our index is generalizable and psychometrically sound, and permits comparison between student confidence
DATE:
TEAM MEMBERS: Paulo Blikstein Zaza Kabayadondo Andrew P. Martin Deborah A. Fields
resource project Public Programs
While the term 'failure' brings to mind negative associations, there is a current focus on failure as a driver of innovation and development in many professional fields. It is also emerging from prior research that for STEM professionals and educators, failure plays an important role in designing and making to increase learning, persistence and other noncognitive skills such as self-efficacy and independence. By investigating how youth and educators attend to moments of failure, how they interpret what this means, and how they respond, we will be better able to understand the dynamics of each part of the experience. The research team will be working with youth from urban, suburban and rural settings, students from Title I schools or who qualify for free/reduced-price lunches, those from racial and ethnic minority groups, as well as students who are learning English as a second language. These youth are from groups traditionally underrepresented in STEM and in making, and research indicates they are more likely to experience negative outcomes when they experience failure.

The intellectual merit of this project centers on establishing a baseline understanding of how failure in making is triggered and experienced by youth, what role educators play in the process, and what can be done to increase persistence and learning, rather than failure being an end-state. The research team will investigate these issues through the use of qualitative and quantitative research methods. In particular, the team will design and evaluate the effectiveness of interventions on increasing the abilities of youth and educators in noticing and responding to failures and increasing positive (e.g., resilience) outcomes. Research sites are selected because they will allow collection of data on youth from a wide range of backgrounds. The research team will also work to test and revise their hypothesized model of the influence of factors on persistence through failures in making. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
DATE: -
TEAM MEMBERS: Adam Maltese Amber Simpson Alice Anderson
resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir
resource project Public Programs
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models for making in a variety of settings through the Enabling the Future of Making to Catalyze New Approaches in STEM Learning and Innovation Dear Colleague Letter. This Early Concept Grant for Exploratory Research (EAGER) will test an innovative approach to bringing making from primarily informal out-of-school contexts into formal science classrooms. While the literature base to support the positive outcomes and impacts of design-based making in informal settings at the K-12 level is emerging, to date, minimal studies have investigated the impacts of making design principles within formal contexts. If successful, this project would not only add to this gap in the literature base but would also present a novel model for bridging the successful engineering design practices of making and tinkering primarily found in informal science education into formal science education classrooms. The model would also demonstrate an innovative, highly interactive way to engage high school students and their teachers in engineering based design principles with immediate real-world applications, as the scientific instruments developed in this project could be integrated directly into science classrooms at relatively minimal costs.

Through a multi-phased design and implementation model, high school students and their teachers will engage deeply in making design principles through the design and development of their own scientific instruments using Arduino-compatible hardware and software. The first phase of the project will reflect a more traditional making experience with up to twenty high school students and their teachers participating in an after-school design making club, in this case, focused on the development and testing of scientific instrument prototypes. During the second phase of the project, the first effort to transpose the after school making experience to a more formalized experience will be tested with up to eight students selected to participate in two week summer research internships focused on scientific instrument design and development through making at Northwestern University. A two-day summer teacher workshop will also be held for high school teachers participating in the subsequent pilot study. The collective insights gleaned from the after school program, student internships, and teacher workshop will culminate to inform the full implementation of the formal classroom pilot study. The third and final phase will coalesce months of iterative, formative research, design and development, resulting in a comprehensive pilot investigation in up to seven high school physics classrooms.

Using a multi-phased, mixed methods exploratory design-based research approach, this 18-month EAGER will explore several salient research questions: (a) How and to what extent does the design & making of scientific instrumentation serve as useful tasks for learning important science and engineering knowledge, practices, and epistemologies? (b) How engaging is this making activity to learners of diverse abilities and prior interests? What can be generalized to other types of making activities? (c) How accessible is the Arduino hardware and coding environment to learners? What combination of hardware and software materials and tools best support accessibility and learning in this type of digital making activity? and (d) What types of scaffolding (for students and teachers) are required to support the effective use of maker materials and activities in a classroom setting? Structured interviews, artifacts, video recordings from visor cameras, student design logs, logfiles, and ethnographic field notes will be employed to garner data and address the research questions. Given the early stage of the proposed research, the dissemination of the findings will be limited to a few select journals, teacher forums and workshops, and professional conferences.

This EAGER is well-poised to directly impact up to 125 high school physics students (average= 25 students/class), approximately 7 high school physics teachers, 6-8 high school summer interns, nearly 20 high school students participating in the after-school design making club, and indirectly many more. The results of this EAGER could provide the basis and evidence needed to support a more robust, expanded future investigation to further substantiate the findings and build the case for similar efforts to bring making into formal science education contexts.
DATE: -
TEAM MEMBERS: David Uttal Kemi Jona