My Sky is a joint project between Boston Children’s Museum (BCM) and the Smithsonian Astrophysical Observatory (SAO). This three-year project was supported by NASA’s NRA/ROSES 2011 (NNX12AB91G) program, and resulted in the creation of My Sky, a 1,500 sq. ft. traveling astronomy exhibit designed for adults and children, ages 5 – 10. My Sky emphasizes authentic experiences that encourage the development of skills and content foundational to later appreciation and understanding of astronomical science. My Sky includes interactive explorations of objects and phenomena visible in the sky, encouraging families to “look up” not only when they visit the exhibit, but as a practice they might adopt in their everyday lives. This is all punctuated by real NASA data and assets, including a 5’ diameter model Moon created using the latest Lunar Reconnaissance Orbiter measurements; and high-resolution images from NASA’s Solar Dynamics Observatory satellite. This project also developed a series of public programs, museum staff training programs, and family workshops, all utilizing NASA resources and existing curriculum.
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.
Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE:
-
TEAM MEMBERS:
Karen OberhauserMichele KoomenGillian RoehrigRobert BlairAndrea Lorek Strauss
In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to explore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea, we analyze the theoretical, structural and epistemological properties of narrative. In the pages that follow, we first discuss the advantages and possibilities for learning that science centers offer alongside challenges and limitations. Next, we discuss the role of narrative in science, as a tool
This project takes an ethnographic and design-based approach to understanding how and what people learn from participation in makerspaces and explores the features of those environments that can be leveraged to better promote learning. Makerspaces are physical locations where people (often families) get together to make things. Some participants learn substantial amounts of STEM content and practices as they design, build, and iteratively refine working devices. Others, however, simply take a trial and error approach. Research explores the affordances are of these spaces for promoting learning and how to integrate technology into these spaces so that they are transformed from being makerspaces where learning happens, but inconsistently, into environments where learning is a consistent outcome of participation. One aim is to learn how to effectively design such spaces so that participants are encouraged and helped to become intentional, reflective makers rather than simply tinkerers. Research will also advance what is known about effective studio teaching and learning and advance understanding of how to support youth to help them become competent, creative, and reflective producers with technology(s). The project builds on the Studio Thinking Framework and what is known about development of meta-representational competence. The foundations of these frameworks are in Lave and Wengers communities of practice and Rogoff's, Stevens et al.'s, and Jenkins et al.'s further work on participatory cultures for social networks that revolve around production. A sociocultural approach is taken that seeks to understand the relationships between space, participants, and technologies as participants set and work toward achieving goals. Engaging more of our young population in scientific and technological thinking and learning and broadening participation in the STEM workplace are national imperatives. One way to address these imperatives is to engage the passions of young people, helping them recognize the roles STEM content and practices play in achieving their own personal goals. Maker spaces are neighborhood spaces that are arising in many urban areas that allow and promote tinkering, designing, and construction using real materials, sometimes quite sophisticated ones. Participating in designing and successfully building working devices in such spaces can promote STEM learning, confidence and competence in one's ability to solve problems, and positive attitudes towards engineering, science, and math (among other things). The goal in this project is to learn how to design these spaces and integrate learning technologies so that learning happens more consistently (along with tinkering and making) and especially so that they are accessible and inviting to those who might not normally participate in these spaces. The work of this project is happening in an urban setting and with at-risk children, and a special effort is being made to accommodate making and learning with peers. As with Computer Clubhouses, maker spaces hold potential for their participants to identify what is interesting to them at the same time their participation gives them the opportunity to express themselves, learn STEM content, and put it to use.
Through a comparative case study, Sheridan and colleagues explore how makerspaces may function as learning environments. Drawing on field observations, interviews, and analysis of artifacts, videos, and other documents, the authors describe features of three makerspaces and how participants learn and develop through complex design and making practices. They describe how the makerspaces help individuals identify problems, build models, learn and apply skills, revise ideas, and share new knowledge with others. The authors conclude with a discussion of the implications of their findings for this
In this essay, Erica Halverson and Kimberly Sheridan provide the context for research on the maker movement as they consider the emerging role of making in education. The authors describe the theoretical roots of the movement and draw connections to related research on formal and informal education. They present points of tension between making and formal education practices as they come into contact with one another, exploring whether the newness attributed to the maker movement is really all that new and reflecting on its potential pedagogical impacts on teaching and learning.
The independent evaluation firm Multimedia Research conducted an evaluation of the television component of SciGirls Season Two, including an experimental study of the impact of the TV series on girls' abilities to take part in science and engineering projects.2 During the same period, the independent evaluation team from Knight Williams Inc. conducted an evaluation of the implementation of the outreach activities among the member institutions of the National Girls Collaborative Project (NGCP) network.
Design-based research (DBR) is used to study learning in environments that are designed and systematically changed by the researcher. DBR is not a fixed “cookbook” method; it is a collection of approaches that involve a commitment to studying activity in naturalistic settings, many of which are designed and systematically changed by the researcher, with the goal of advancing theory at the same time directly impacting practice. The goal of DBR (sometimes also referred to as design experiments) is to use the close study of learning as it unfolds within a naturalistic context that contains
DATE:
TEAM MEMBERS:
Sasha Barab
resourceresearchProfessional Development, Conferences, and Networks
Design research is strongly associated with the learning sciences community, and in the 2 decades since its conception it has become broadly accepted. Yet within and without the learning sciences there remains confusion about how to do design research, with most scholarship on the approach describing what it is rather than how to do it. This article describes a technique for mapping conjectures through a learning environment design, distinguishing conjectures about how the design should function from theoretical conjectures that explain how that function produces intended outcomes.
Large-scale assessments like PISA are highly influential in policymaking, but they don’t tell us anything about the nature of student learning underpinning the scores. In this study, an additional instrument was administered to students in Finland, Germany, and Switzerland. Finnish students, who score higher on PISA, also scored higher on the second assessment. Findings suggest that Finnish students may have developed more complex knowledge bases in science.
Prince George’s County Public Schools (PGCPS) Howard B. Owens Science Center (HBOSC) will infuse NASA Earth, Heliophysics, and Planetary mission science data into onsite formal and informal curriculum programs to expand scientific understanding of the Earth, Sun, and the universe. The goal of the project is to develop a pipeline of programs for grades 3-8 to enhance teacher and student understanding of NASA Science Mission Directorate (SMD) Earth, Planetary, and Heliophysics science and promote STEM careers and understanding of NASA career pathways using the HBOSC Planetarium, Challenger Center and classrooms. During the school year, PGCPS students in Grades 3 through 8 will experience field trip opportunities that will feature NASA Sun-Earth connection, comparative planetology, Kepler Exoplanet data, and NASA Space Weather Action Center data. PGCPS Grade 3 through 8 teachers will receive summer, day, and evening professional development in comparable earth and space science content both engaging the HBOSC Planetarium and Challenger facility and its resources. The students and teachers in four PGCPS academies (Grades 3 through 8) will serve as a pilot group for broader expansion of the program district-wide. ESPSI will provide opportunities for county-wide participation through community outreach programs that will promote NASA Earth, Heliophysics, and Planetary mission data. Community outreach will be offered through piloting the Maryland Science Center outreach program to four of PGCPS southern located schools and monthly evening planetarium shows along with quarterly family science nights that will include guest speakers and hands-on exhibits from the local science community and Goddard Space Flight Center (GSFC).
DATE:
-
TEAM MEMBERS:
Kara Libby
resourceprojectProfessional Development, Conferences, and Networks
Achieving the Future of Education and Engagement is focused on the 21st Century Teacher Academy. 21CTA is a unique Educator Professional Development (EPD) two-week residential workshop designed to immerse teachers in best practices and methodologies to develop and implement real-world, Project Based Learning (PBL) curricula using NASA missions. Participating teams of STEM teachers from across the Nation are invited to Ames Research Center in order to fully experience the center's world-class facilities and researchers.
The program's intensive structure achieves the following goals: Improve educational opportunities for teachers and students, deepen teacher understanding of implementing 21st century skills using NASA centric PBL, and create an active Professional Learning Community (PLC) through NASA Ames. In order to meet the program goals, participants will: 1) Successfully design and construct PBL based lessons using NASA content, 2) Integrate NASA missions, resources and programs into lesson plans and resource documents, 3) Demonstrate a deep knowledge of NASA aeronautics research by integrating several different topics into their curricula, 4) Actively participate in NASA outreach (media networking), with students to inspire STEM participation, 5) Conduct a NASA Themed PBL using train-the-trainer module to other educators within the first year of participating in 21CTA.
At the conclusion of the workshop each participant team produced: At least one complete NASA themed PBL curricula, including no fewer than 3 NASA themed PBL activities; Supplemental multi-media presentations and tools to accompany, and/or be integrated into, the main PBL curricula, and; Submitted lessons, content, and best practices on the Professional Learning Community (PLC) website.