The goal of the project is to advance understanding of basic questions about learning and teaching through the development of a theory of embodied mathematical cognition that can apply to a broad range of people, settings and activities. The investigative team brings together expertise from a range of quantitative and qualitative research methodologies. A theory of embodied mathematical cognition empirically rooted in classroom learning and workplace practices will broaden the range of activities and emerging technologies that count as mathematical, and help educators to envision alternative forms of bodily engagement with mathematical problems.
DATE:
-
TEAM MEMBERS:
Ricardo NemirovskyRogers HallMartha AlibaliMitchell NathanKevin Leander
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).
The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).
There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
The formative evaluation of Season 2 of Design Squad was performed in two parts. Part 1 included a field test conducted by American Institutes for Research in spring 2008. Part 2, conducted by Veridian inSight, included follow-up interviews with teachers whose classrooms participated in the field test. The teacher interviews were conducted in fall of 2008. This document is the Design Squad, Season 2 final evaluation report. It contains the following sections: Section 1: Highlights from the teacher interviews conducted in fall of 2008 by Veridian inSight. Section 2: Findings from the field test
DATE:
TEAM MEMBERS:
Veridian inSight, LLCAmerican Institutes for Research
This paper reports on a study that investigated students' metacognitive engagement of in both out-of-school and classroom settings, as they participated in an amusement park physics program. Students from two schools that participated in the program worked in groups to collectively solve novel physics problems that engaged their individual metacognition. Their conversations and behavioral dispositions during problem solving were digitally audio-recorded on devices that they wore or placed on the tables where groups worked on the assigned physics problems. The students also maintained
DATE:
TEAM MEMBERS:
David AndersonWendy NielsenSamson Nashon
In this article, we explore the Programme for International Student Assessment (PISA) with a lens informed by the socioscientific issues (SSI) movement. We consider the PISA definition of scientific literacy and how it is situated with respect to broader discussions of the aims of science education. We also present an overview of the SSI framework that has emerged in the science education community as a guide for research and practice. We then use this framework to support analysis of the PISA approach to assessment. The PISA and SSI approaches are seemingly well aligned when considering
This article reviews how the relationship between computer games and learning has been conceptualized in policy and academic literature, and proposes a methodology for exploring learning with games that focuses on how games are enacted in social interactions. Drawing on Sutton-Smith's description of the rhetorics of play, it argues that the educational value of games has often been defined in terms of remedying the failures of the education system. This, however, ascribes to games a specific ontology in a popular culture that is defined in terms of its opposition to school culture. By
Both in common parlance and within the academy, the word “learning” has broad and varied meanings. On the street, we apply the same term to a child who, as a result of bitter experience, will no longer tease an older, tougher peer, and to those who achieve the highest Latinate degrees after many years of study at the University. In the field of psychology, “learning” was the major topic in America for fifty years, before it was replaced and almost consigned to oblivion, courtesy of the “cognitive revolution” of the 1960s (Gardner 1985). Now, with study becoming a lifelong enterprise, and with
DATE:
TEAM MEMBERS:
Margaret WelgelCarrie JamesHoward Gardner
This article examines how effectively a curriculum designed for a sixth grade classroom in a low income urban middle school was adapted utilize the funds of knowledge that existed among the students. The author discusses how all students draw on information that they obtain from their environment in the classroom and that this is often difficult for students in science classrooms in urban areas. The curriculum that is examined was for a unit that explored food and nutrition. The authors examine what funds of knowledge the students did bring into the classroom and how they were able to utilize
This paper presents research on parent support of the development of new media skills and technological fluency. Parents' roles in their children's learning were identified based on interviews with eight middle school students and their parents. All eight students were highly experienced with technology activities. Seven distinct parental roles that supported learning were identified and defined: Teacher, Collaborator, Learning Broker, Resource Provider, Nontechnical Consultant, Employer, and Learner. The parents in this sample varied in their level of technological knowledge, though in every
This paper argues that DR K-12 grantees can enhance the long-term consequences of their work by using insights from research on dissemination. In education and other fields, studies of dissemination have identified processes by which research knowledge reaches (or fails to reach) the practitioners and policymakers who could use it.
DATE:
TEAM MEMBERS:
Community for Advancing Discovery Research in Education (CADRE)Brenda Turnbull
Many teachers are unsure about how to best utilize museum educational resources. They do not think that approaches and strategies from informal learning environments apply to classroom settings (Melber & Cox-Peterson, 2005). Yet studies have shown that simple solutions such as exhibit orientation and conducting pre and post-visit activities to supplement a field trip can help students have a richer learning experience (Gilbert & Priest, 1997; Anderson & Lucas, 1997). The current study explores the affect of making relevant findings from informal learning research explicit to pre-service
This report focuses on the use of games as resources to support the educational aims, objectives, and planned outcomes of teachers who understand that games are an important medium in contemporary culture and young people's experiences. The report provides an assessment of game-based learning in UK schools. It is intended to test out the hype and enthusiasm for using games in education and to identify a sensible rationale and practical strategies for teachers to try out games in the classroom.