Skip to main content

Community Repository Search Results

resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff
resource project Media and Technology
Kinetic City After School is a project supported by a prior NSF award that has produced over 80 activities in areas typical of after school activities such as computer games/simulations, hands-on activities, active play, and art and writing. This pathways project, KC Empower, will redesign and test five activities of the 80 activities currently developed by Kinetic City using a new approach to increase the representation of children and youth with disabilities in informal science settings. The project will test how universal design principles can be integrated with new technologies, not available when most after school STEM content was created, to address the needs of students with disabilities. The technologies used in the redesign include advanced mobile platforms and applications; search engines that sift through audio, image and video files; gaming input devices that respond to body movements; and information restructuring that allows multiple representations of content. The project will test how universal design guidelines will work with new technologies, in the short-term providing hands-on activities more accessible to students with disabilities, while increasing access for all students. The project is expected to lead to a full scale development project that will update all modules in Kinetic City After School. The target audience is 3rd - 5th grade students. The hypothesis of the project is that designing for disability can strengthen activities designed to increase science knowledge. Rather than making accommodations for persons with disabilities, it is the environment and design that are disabled, and it is better educational practice to rethink the activity from the point of view of all learners, including those with disabilities. Thus the use of universal design will address how best to present material for all users while influenced by the challenges presented by disabled users. The project includes the Coalition for Science After School, the Center for Applied Special Technology and the Afterschool Alliance.
DATE: -
TEAM MEMBERS: Robert Hirshon Laureen Summers
resource evaluation Media and Technology
This evaluation reports on the Mission: Solar System project, a 2-year project funded by NASA. The goal of the Mission: Solar System was to create a collection of resources that integrates digital media with hands-on science and engineering activities to support kids’ exploration in formal and informal education settings. Our goal in creating the resources were: For youth: (1) Provide opportunities to use science, technology, engineering, and math to solve challenges related to exploring our solar system, (2) Build and hone critical thinking, problem-solving, and design process skills, (3)
DATE:
TEAM MEMBERS: WGBH Educational Foundation Sonja Latimore Christine Paulsen
resource evaluation Media and Technology
Rockman et al (REA), a San Francisco-based research and evaluation firm, conducted the external evaluation for Youth Radio's DO IT! program, which was funded by the National Science Foundation. Building upon Youth Radio's previous Science and Technology Program, the DO IT! initiative consisted of three primary components that promoted STEM (science, technology, engineering, and mathematics) learning by training underserved youth in cutting-edge digital technologies: (1) Brains and Beakers: Young people hosted a line-up of investigators and inventors for demo-dialogues at Youth Radio's studios
DATE:
TEAM MEMBERS: Rockman et al | Youth Radio Kristin Bass Julia Hazer
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource research Public Programs
This article describes an educator's experience in engaging reluctant male students in writing by leading an afterschool writing program. Write After School offers choice within structure and encourages interaction in ways designed to engage reluctant writers, allowing them to choose their own topics, receive feedback, and talk about their work.
DATE:
TEAM MEMBERS: Steven Garlid
resource research Public Programs
This article describes discussions about the relationship between afterschool programs and the Common Core Standards at a networking meeting sponsored by the Robert Bowne Foundation for out-of-school time (OST) providers in New York City in the fall of 2013. The meeting was entitled "Introducing the Common Core Learning Standards: What Are They? What Do We Need to Know?"
DATE:
TEAM MEMBERS: Suzanne Marten Sara Hill Anne Lawrence
resource research Public Programs
One in three children in the US is overweight or obese. One in five lives in food-insecure households that struggle to put food on the table. Both problems are linked to poor academic performance, behavior problems, and high rates of school absenteeism. To address these issues, the Alliance for a Healthier Generation's Out-of-School Time initiative has been working since 2011 in eight cities to support the adoption of the National Afterschool Association's healthy eating and physical activity (HEPA) standards by before-school, afterschool, and summer programs.
DATE:
TEAM MEMBERS: Daniel Hatcher Crystal Weedall Fitzsimons Jill Turley
resource research Public Programs
This article reviews a book that provides a detailed account of the interviews, observations, research, and successes and failures that led to the development of Project Coach, a program that helps youth gain life skills through mastery of a sport. Project Coach empowers and employs teenagers to become coaches and academic mentors to elementary youth in the community.
DATE:
TEAM MEMBERS: Diane Gruber
resource research Public Programs
What would it be like to increase the number of youth-serving volunteers who can competently lead science, technology, engineering, and math (STEM) activities? This question guided the Inquiry in the Community project, launched in 2008. Along with Girl Scout staff colleagues and volunteers, the project created a system for embedding inquiry-based science into a youth development organization.
DATE:
TEAM MEMBERS: Stephanie Lingwood Jennifer Sorensen
resource research Public Programs
Over the last ten years, out-of-school-time (OST) science programs have multiplied to increase young people’s exposure to science. However, there are still not enough opportunities for long-term engagement, which is essential to move youth from having interest in science to having the skills, knowledge, and self-efficacy to pursue careers in science. This article describes findings from exploratory research conducted to document the experiences of a small group of young women of color who participated in a museum-based OST program during their middle and high school years.
DATE:
TEAM MEMBERS: Jennifer Adams Preeti Gupta Alix Cotumaccio