The University of Montana spectrUM Discovery Area will implement “Making Across Montana” —a project to engage K–12 students and teachers in rural and tribal communities with making and tinkering. In collaboration with K–12 education partners in the rural Bitterroot Valley and on the Flathead Indian Reservation, the museum will develop a mobile making and tinkering exhibition and education program. The exhibition will be able to travel to K–12 schools statewide. The project team will develop a K–12 teacher professional development workshop, along with accompanying curriculum resources and supplies. The traveling program and related materials will build schools’ capacity to incorporate making and tinkering—and informal STEM experiences more broadly—into their teaching.
This workshop is funded through the "Dear Colleague Letter: Principles for the Design of Digital Science, Technology, Engineering, and Mathematics (STEM) Learning Environments (NSF 18-017)." In today's educational climate, organizations are creating physical learning spaces for hands-on STEM activities, often called makerspaces, co-working spaces, innovation labs, or fablabs. These spaces have evolved to be interdisciplinary centers that personalize learning for individual, diverse learners in collaborative settings. When designed well, these physical spaces create communities that contextualize learning around participants' goals and thus address STEM learning in a dynamic and integrated way. Participation in these learning environments encourages the cultivation of STEM identities for young people and can positively direct their career trajectories into STEM fields. This workshop will bring together a community of collaborators from multiple stakeholder groups including academia, public libraries, museums, community based organizations, non-profits, media makers and distribution channels, and educators within and beyond K-12 schools. Led by the University of Arizona, and held at Biosphere 2, an international research facility, participants will engage in activities that invite experimentation with distributed learning technologies to examine ways to adapt learning to the changing technological landscape and create robust, dynamic online learning environments. The workshop will culminate in a synthesis of design principles, assessment approaches, and tools that will be shared widely. Partnerships arising from the workshop will pave the way for sustained efforts in this area that span research and practice communities. Outcomes will address research and development of the next generation of digitally distributed learning environments.
The three day workshop convening will provide a unique forum to (1) exchange innovative ideas and share challenges and opportunities, (2) connect practical and research-based expertise and (3) form cross-institutional and cross-community partnerships that envision, propose, and implement opportunities for collecting and analyzing data to systematically inform the collective understanding. Participation-based activities will include design-based experiences, participatory activities, demonstrations of works in progress, prototyping, creative pitching, practitioner lightning talks, small group breakouts, hands-on design activities, and an 'unconference' style synthesis of bold ideas. Participants will be invited to experiment with distributed learning technologies. Five focus areas for the workshop include (1) inclusivity of learning spaces that invite multiple perspectives and full participation, (2) documenting learning in ways that are linked to outcomes and impacts for all learners, (3) implementing the use of new technologies in diverse settings, such as the workforce, (4) interpersonal interactions and peer-to-peer learning that may encourage a STEM career-path, and, (5) methods for collecting and analyzing data at the intersection of people, the learning environment, and new technologies at multiple levels. Outcomes of the workshop will serve to advance knowledge regarding critical gaps and opportunities and identify and characterize models of collaboration, networking, and innovation that operate within and across studio-based STEM learning environments.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
While there is increased interest in youth-centered maker programs in informal educational contexts, scarce research-informed professional development exist that focus on how informal educators do or should plan and handle ongoing, just-in-time support during moments of failure. Prior research supports the important role of failure in maker programming to increase learning, resilience and other noncognitive skills such as self-efficacy and independence. The objective of this project is to address this gap through adapting, implementing, and refining a professional development program for informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in maker programs in informal learning contexts. In the first two years of the project, the research team will work closely with six partners to implement and refine the professional development model: The Tech Museum of Innovation, The Bakken Museum, Montshire Museum of Science, The Minneapolis Institute of Art, Thinkery, and Amazeum Children’s Museum. In the last year of the project, the team will scale-up the professional development model through partnering with an additional nine institutions implementing maker programming for youth. The professional development consists of two models. In the first model, we support one to two lead facilitators at each partnering institution through an initial three-day workshop and ongoing support meetings. In the second model, the lead facilitators support other informal educators at their institution implementing making programs for youth. This project will enhance the infrastructure for research and education as collaborations and professional learning communities will be established among a variety of informal learning institutions. The project will also demonstrate a link between research and institutional and societal benefits through shifting the connotation and perceptions of failure to be valued for its educational potential and to empower informal educators to support discomfort and struggle throughout maker programs with youth.
The three goals of this collaborative project are to (a) advance the field of informal education through a research-based professional development program specific to youths’ failures during maker programs; (b) support shifts in informal educators’ facilitation practices and perspectives around youth’s failure experiences, and (c) investigate the effects of the professional development on youths’ resilience and failure mindset. The iterative nature of this project will be informed by the collection and analysis of video data of professional development sessions and informal educators facilitating maker programs, reflective journaling, surveys regarding the professional development, and pre-post surveys from youth engaged in the maker programs. Dissemination will address multiple stakeholders, including informal educators, program developers, evaluators, researchers, and public audiences.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
Brokering Youth Pathways was created to share tools and techniques around the youth development practice of “brokering” or connecting youth to future learning opportunities and resources.
This toolkit shares ways in which various out-of-school educators and professionals have approached the challenge of brokering. It provides a framework, practice briefs and reports that focus on a particular issue or challenge and provide concrete examples, as well as illustrate how project partners partners worked through designing new brokering routines in partnership with a research team.
“Tinkering EU: Building Science Capital for All” aims to develop activities and resources that support a learner-centred culture, improve science education and develop 21st century skills - all of which are fundamental for active citizenship, employability, and social inclusion. To do this, it adopts ‘Tinkering’, an innovative pedagogy developed in the USA, which is used by museums, and has proven able to create a lifelong engagement with science for everyone. Tinkering works particularly well for people who argue that “they are not good at science” or are disaffected from any formal teaching and learning process. It can be a powerful tool to tackle disadvantage. The project integrates Tinkering into the school curriculum to develop the science capital of disadvantaged youth through the use of museums. It addresses students from 8 to 14 years old (primary and junior high schools).
Coordinator: National Museum of Science and Technology Leonardo da Vinci
Partners:
University of Cambridge – UK
NEMO Science Museum – The Netherlands
Science Gallery Dublin – Ireland
CosmoCaixa – Spain
Science Center Network – Austria
NOESIS – Greece
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models for making in a variety of settings through the Enabling the Future of Making to Catalyze New Approaches in STEM Learning and Innovation Dear Colleague Letter. This Early Concept Grant for Exploratory Research (EAGER) will test an innovative approach to bringing making from primarily informal out-of-school contexts into formal science classrooms. While the literature base to support the positive outcomes and impacts of design-based making in informal settings at the K-12 level is emerging, to date, minimal studies have investigated the impacts of making design principles within formal contexts. If successful, this project would not only add to this gap in the literature base but would also present a novel model for bridging the successful engineering design practices of making and tinkering primarily found in informal science education into formal science education classrooms. The model would also demonstrate an innovative, highly interactive way to engage high school students and their teachers in engineering based design principles with immediate real-world applications, as the scientific instruments developed in this project could be integrated directly into science classrooms at relatively minimal costs.
Through a multi-phased design and implementation model, high school students and their teachers will engage deeply in making design principles through the design and development of their own scientific instruments using Arduino-compatible hardware and software. The first phase of the project will reflect a more traditional making experience with up to twenty high school students and their teachers participating in an after-school design making club, in this case, focused on the development and testing of scientific instrument prototypes. During the second phase of the project, the first effort to transpose the after school making experience to a more formalized experience will be tested with up to eight students selected to participate in two week summer research internships focused on scientific instrument design and development through making at Northwestern University. A two-day summer teacher workshop will also be held for high school teachers participating in the subsequent pilot study. The collective insights gleaned from the after school program, student internships, and teacher workshop will culminate to inform the full implementation of the formal classroom pilot study. The third and final phase will coalesce months of iterative, formative research, design and development, resulting in a comprehensive pilot investigation in up to seven high school physics classrooms.
Using a multi-phased, mixed methods exploratory design-based research approach, this 18-month EAGER will explore several salient research questions: (a) How and to what extent does the design & making of scientific instrumentation serve as useful tasks for learning important science and engineering knowledge, practices, and epistemologies? (b) How engaging is this making activity to learners of diverse abilities and prior interests? What can be generalized to other types of making activities? (c) How accessible is the Arduino hardware and coding environment to learners? What combination of hardware and software materials and tools best support accessibility and learning in this type of digital making activity? and (d) What types of scaffolding (for students and teachers) are required to support the effective use of maker materials and activities in a classroom setting? Structured interviews, artifacts, video recordings from visor cameras, student design logs, logfiles, and ethnographic field notes will be employed to garner data and address the research questions. Given the early stage of the proposed research, the dissemination of the findings will be limited to a few select journals, teacher forums and workshops, and professional conferences.
This EAGER is well-poised to directly impact up to 125 high school physics students (average= 25 students/class), approximately 7 high school physics teachers, 6-8 high school summer interns, nearly 20 high school students participating in the after-school design making club, and indirectly many more. The results of this EAGER could provide the basis and evidence needed to support a more robust, expanded future investigation to further substantiate the findings and build the case for similar efforts to bring making into formal science education contexts.
In January 2012, New York Hall of Science (NYSCI) hosted Design-Make-Play: Growing the Next Generation of Science Innovators. The two-day conference brought together leaders of schools, community-based programs, research and development organizations, the funding community, universities, government and business. They gathered at NYSCI to assemble evidence supporting the belief that designing, making and playing can create new pathways into science, technology, engineering and math (STEM), particularly among children. A core argument of Design-Make-Play is that informal learning centers like
Recognizing that the Maker movement embodies aspects of science, technology, engineering, and mathematics (STEM) learning that are the hallmarks of effective education — deep engagement with content, critical thinking, problem solving, collaboration, learning to learn, and more — NYSCI, in collaboration with Dale Dougherty and Tom Kalil, approached the National Science Foundation to sponsor a two-day workshop. Over 80 leaders in education, science, technology and the arts came together at NYSCI to consider how the Maker movement can help stimulate innovation in formal and informal education
This award supports a workshop to be held in conjunction with the 2010 World Maker Faire being hosted at the New York Hall of Science. The purpose of the workshop is to bring together the Maker community with formal and informal science and mathematics learning experts. The Maker movement is a recent phenomenon promoted by the Maker Media division of O'Reilly Media. There are currently three U.S. and one International Maker Faires, with attendance of about 30,000 each. The Faires consist of exhibits characterized as technology-rich and innovative and developed either by the exhibitor (Do-It-Yourself or DIY) or increasingly, as collaborative exhibits (Do-It-With-Others or DIWO). Participants visiting the Faires interact directly with the developer(s) and exhibits to learn the technology and engineering skills associated with designing and building their own products. The New York Hall of Science workshop will be co-chaired by Tom Kalil, Associate Director of the White House Office of Science and Technology, and Dale Dougherty, Founder of the Maker Faires. It will have approximately 50 participants drawn from academe, business, non-profits, and state, local and federal government. Workshop attendees will observe and participate in the Maker Faire at the New York Hall of Science the day before the workshop. On the second day, attendees will then address the following questions: 1) How can the innovations of the Maker movement inform science and mathematics education?; 2) What collaborations between policy makers, education and learning science researchers, and the Maker Movement can best spur innovation in science and mathematics education?; 3) What funding opportunities are possible between the Maker community and the private, philanthropic, and government sectors for the support of transformative science and mathematics education and learning research? The workshop will result in a multimedia report that will propose answers to these questions. The report will inform the education and learning science research communities about opportunities for innovations in education and learning. The workshop is designed to broadly inform both policy and practice in STEM Education. The Maker/DIY/DIWO movement is focused on design and engineering. These processes are important in STEM disciplines. In particular, the movement has motivated thousands of individuals to voluntarily participate in building technology-based projects in a manner similar to the open source software movement. If this motivation can be broadly harnessed, it could transform STEM education through new knowledge of STEM learning science and education research. The broader impact of this workshop is situated in the large numbers of individuals already engaged in Maker/DIY/DIWO projects. If more STEM content can be married to these projects, then the impact to science learning and teaching could be substantial. Since many of the Maker Faire participants come from rural communities, there is an implicit promise that incorporating more STEM content into Faire projects could have the effect of broadening participation to an underrepresented community.
This report provides a brief summary of a research meeting on making and makerspaces organized by Children’s Museum of Pittsburgh and the University of Pittsburgh’s Learning Research and Development Center. The meeting took place July 21st and 22nd, 2014 at The Children’s Museum. Motivated by a resurgence of interest in DIY (do-it-yourself) culture and prompted by the introduction of new technologies, physical computing and fabrication, the Maker Movement offers new opportunities for learning experiences that develop creativity and innovation. Making and makerspaces represent an emerging
DATE:
TEAM MEMBERS:
Children's Museum of PittsburghUniversity of PittsburghPeter WardripLisa BrahmsKevin Crowley