Skip to main content

Community Repository Search Results

resource project Media and Technology
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
DATE: -
TEAM MEMBERS: Alan Winick
resource project Exhibitions
The Children's Museum of Denver will create two dynamic and hands-on, STEM (Science, Technology Engineering, and Math) exhibits to engage visitors in learning. The "ENERGY" exhibit will inspire the next generation of energy innovators by allowing children to observe and interact with wind, solar and other fuel resources. The "WATER" exhibit will take children's natural fascination with this life-giving substance and extend it to scientific inquiry into the physical and sensorial properties of water. Through the exhibits, the museum will support the development of 21st century skills, build confidence, and increase the likelihood children will pursue further STEM education and careers.
DATE:
TEAM MEMBERS: Jonathan Goldstein
resource project Public Programs
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
DATE: -
TEAM MEMBERS: Cathy Ferree
resource project Media and Technology
In partnership with the University of Pennsylvania's Graduate School of Education, The Franklin Institute Science Museum will develop, test, and pilot an exportable and replicable cyberlearning exhibit using two cutting edge technologies: Augmented Reality (AR) and Virtual Reality (VR). The exhibit's conceptualization is anchored in the learning research vision of the NSF-funded workshop Cyberinfrastructure for Education and Learning for the Future (Computing Research Association, 2005). The incorporation of VR and AR technologies into the Franklin Institute's electricity and Earth science exhibits is an innovation of traditional approaches to hands-on learning and will improve the quality of the learning experience for the primary audience of families with children and elementary school groups. The project has implications for future exhibit development and more broadly, will provide new research on learning on how to incorporate cyberlearning efforts into traditional exhibits. Fifteen participating exhibit developers across the ISE field will assist in the evaluation of the new exhibit; receive training on the design and development of VR and AR exhibits for their institutions; and receive full access to the exhibit's new software for implementation at their informal learning sites. The technology applications will be developed by Carnegie Mellon University's Entertainment Technology Center--leaders in the field in Virtual Reality design and development. Front-end and formative evaluation will be overseen internally by the Franklin Institute. The Institute for Learning Innovation will conduct the summative evaluation. Research will be conducted by the University of Pennsylvania's Graduate School of Education on the effects of AR and VR technologies on exhibit learning.
DATE: -
TEAM MEMBERS: Steven Snyder Karen Elinich Susan Yoon
resource evaluation Exhibitions
This evaluation provides feedback from a tracking and timing study from the project "Seeing: The Interaction of Physiology, Culture, and Technology" at the Exploratorium. The evaluation concludes that Seeing is a large, complex collection of loosely related exhibit elements that attract and hold visitors’ attention well, but not exceptionally well. Yet, given the size and scope of the exhibits, a longer average time and more stops would not be expected. The individual interactive elements range from many that are modestly engaging, to some that are highly engaging, with a few exceptionally
DATE:
TEAM MEMBERS: Beverly Serrell
resource evaluation Exhibitions
The Seeing Team wished to determine visitors what visitors understood from interacting with the Seeing section of the museum, before the section was to be renovated. In particular, they wanted to know what visitors took away from the exhibits as a group. We interviewed pairs of visitors after they had been directed to spend as much time as they wanted in the Seeing section (as marked off by blue tape on the floor). Seeing included the exhibits in the back of the museum as well as those near the south bathrooms. We collected approximately 55 interviews, of which 33 had been transcribed by the
DATE:
TEAM MEMBERS: Josh Gutwill
resource evaluation Exhibitions
This evaluation describes the results of three individual exhibits that were a part of the project "Seeing: The Interaction of Physiology, Culture, and Technology" at the Exploratorium. This document contains findings for "Seeing Yellow," "Peripheral Vision," and "Motion Detector."
DATE:
TEAM MEMBERS: Josh Gutwill
resource research Exhibitions
This article makes a case for providing multiple types of hands-on resources to support learner inquiry. More specifically, a computer simulation of an electric circuit complemented work with a real circuit to support learners’ conceptual development. When learners had the opportunity to use both simulated and real circuits, less structured guidance seemed to benefit the inquiry process.
DATE:
TEAM MEMBERS: Clea Matson
resource research Exhibitions
The Exhibit Designs for Girls' Engagement (EDGE) PI poster provides the background for the research, the research questions, the steps we are taking to answer those questions, our audience and deliverables, and the challenges we've faced in the first year.
DATE:
TEAM MEMBERS: Exploratorium Toni Dancstep Veronica Garcia-Luis
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It highlights the work accomplished through the ARIEL project, which developed a cyberlearning exhibit using augmented and virtual reality.
DATE:
TEAM MEMBERS: The Franklin Institute Karen Elinich Susan Yoon
resource research Exhibitions
This poster was presented at the 2014 AISL PI Meeting. The project seeks to understand the effects of interactive and immersive environments on the learning of science concepts in informal settings, specifically the role of embodied interactions and whether cueing students to physically enact critical ideas in physics will support middle school students' learning, engagement, and identification with science. This is done using an environment called MEteor, a simulation of planetary astronomy where students use their body to make predictions about how an asteroid will move through space.
DATE:
TEAM MEMBERS: Robb Lindgren
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting. The Prairie Science project is about facilitating learning STEM concepts by integrating a historical perspective (Conner Prairie Museum) and a science center-based perspective (Science Museum of Minnesota).
DATE:
TEAM MEMBERS: Cathy Ferree