A partnership between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods.
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
Using data from interviews with 133 physicists and biologists working at elite research universities in the United States, we analyze narratives of outreach. We identify discipline-specific barriers to outreach and gender-specific rationales for commitment. Physicists view outreach as outside of the scientific role and a possible threat to reputation. Biologists assign greater value to outreach, but their perceptions of the public inhibit commitment. Finally, women are more likely than men to participate in outreach, a commitment that often results in peer-based informal sanctions. The study
DATE:
TEAM MEMBERS:
David JohnsonAnne EcklundAnne Lincoln
Scholars and pundits alike argue that U.S. scientists could do more to reach out to the general public. Yet, to date, there have been few systematic studies that examine how scientists understand the barriers that impede such outreach. Through analysis of 97 semi-structured interviews with academic biologists and physicists at top research universities in the United States, we classify the type and target audiences of scientists’ outreach activities. Finally, we explore the narratives academic scientists have about outreach and its reception in the academy, in particular what they perceive as
DATE:
TEAM MEMBERS:
Elaine Howard EcklundSarah JamesAnne Lincoln
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
Effective communication of science to the public by scientists is a desired and sought after attribute. This project which is working with graduate and undergraduate students in Physics will determine what interventions are best in assessing communication and attitudinal capacities in this cadre. Further, the project will determine what strategies are best at remediation. Finally, the successes will be generalized with regard to interventions and remediation to other Physics programs across the country and perhaps to other disciplines in the STEM fields. There are a variety of factors that contribute to effective communications with public audiences. Some of those factors include audience characteristics and teacher/mentor capabilities. This project will ascertain the issues in the latter teacher/mentor capacities. They will assess the mentor's baseline skills regarding communication, teaching and emergent attitudes. These are considered separately as each contributes uniquely to the effectiveness of communication. In the communications skills section, the objective will be to determine initially if the mentors are using any one of the following models: deficit, meaning the mentor is the expert and the participants are not informed; dialogue, where there is more back and forth between mentor and participant; and finally participatory interactions, where there is full integration of participant and mentor ideas. Once the baseline is established, the investigators will introduce mechanisms for remedial intervention with the student mentors to determine if and what types of changes can be made to improve communication directed toward public understanding of STEM concepts and ideas. Finally, the researchers will seek to determine if these interventions have affects beyond the immediate challenges such as career discussions, participation in classes and/or written products.
This study sought to understand what motivates students at the high school and early college level to choose physics. It explored students’ expectations of their study of physics and their priorities for future careers. The researchers intended to contribute strategies to increase the number of females who complete university physics degrees. They also hoped to show that a wider range of perspectives needs to be represented among physics practitioners.
This paper by Mujtaba and Reiss explores tendencies in girls’ and boys’ motivations, attitudes, and perceptions toward studying physics after age 16. Findings suggest that girls who want to continue studying physics understand the material and social benefits it affords. They are also more competitive than other students. However, in general, they have less confidence in their abilities than boys.
This paper describes the potential benefits of incorporating art into physics education. Drawing and sculpture provide a way of understanding abstract concepts. The process may also allow educators to “humanize” physics and thus make it more accessible to historically marginalized groups.
This article makes a case for providing multiple types of hands-on resources to support learner inquiry. More specifically, a computer simulation of an electric circuit complemented work with a real circuit to support learners’ conceptual development. When learners had the opportunity to use both simulated and real circuits, less structured guidance seemed to benefit the inquiry process.
This article describes how two inquiry games promoted student science skills in a museum setting while minimizing demands on teachers, fostering collaboration, and incorporating chaperones. Students who played these games engaged in more scientific inquiry behaviors than did students in control groups.
The present paper describes the design of teaching materials that are used as learning tools in school visits to a science museum. An exhibition on ‘A century of the Special Theory of Relativity’, in the Kutxaespacio Science Museum, in San Sebastian, Spain, was used to design a visit for first‐year engineering students at the university and assess the learning that was achieved. The first part of the paper presents the teaching sequence that was designed to build a bridge between formal teaching and the exhibition visit. The second part analyses the potential of the exhibition and the
DATE:
TEAM MEMBERS:
Jenaro GuisasolaJordi SolbesJose-Ignacio BarraguesMaite MorentinAntonio Moreno