This poster will be presented at the 2019 NSF AISL PI Meeting to represent the Playbook resource arising from the Collaborative Project Management (CoPM) Institute. The Institute will be held February 13 through 15, 2019 in Arlington, Virginia. The Institute will bring together ten collaborative project leaders (28 participants from 20 institutions) for an in-person workshop designed to build the capacity of informal science institutions (ISIs) and their university and community partners to use evidence-based collaborative project management practices and culturally responsive approaches to
In this paper, we introduce the Exploratory Behavior Scale (EBS), a quantitative measure of young children's interactivity. More specifically, the EBS is developed from the psychological literature on exploration and play and measures the extent to which preschoolers explore their physical environment. A practical application of the EBS in a science museum is given. The described study was directed at optimizing parent guidance to improve preschoolers' exploration of exhibits in science center NEMO. In Experiment 1, we investigated which adult coaching style resulted in the highest level of
This paper presents an exhibit assessment tool for science centers that is based on the premise, supported by learning theories and research, that the level to which a visitor is engaged by an exhibit is a direct indicator of the learning taking place. Observable behaviors are used to distinguish three stages or levels of visitor engagement described as initiation, transition, and breakthrough. A distinctive visitor engagement profile can be constructed for an exhibit that can then be used in assessing the effectiveness of subsequent changes made to the exhibit experience. It is suggested that
This article shares the results and reflections on the research process conducted by the Maloka Interactive Museum (https://www.maloka.org/) regarding the implementation of the policy that extends the school day in public schools in Bogotá. Based on ethnographic observations, focus groups and interviews with the participants, the text concludes that the communication and education process about science and technology can be understood as a social practice of knowledge exchange among heterogeneous participants whose intention is to promote transformations within their specific settings.
This
DATE:
TEAM MEMBERS:
Gonzalo PeñalozaLina QuijanoSigrid FallaSara Marquez
This article reviews current research on informal science learning through news media. Based on a descriptive model of media-based science communication we distinguish between (a) the professional routines by which journalists select and depict scientific information in traditional media and (b) the psychological processes that account for how media recipients select, process and integrate such information. We argue that science literacy and media literacy in laypersons can be promoted by combining insights from the research on mass media production, laypersons’ reception processes and the
DATE:
TEAM MEMBERS:
Michaela MyerTobias RochmundAndrea RetzbachLukas OttoJohn Besley
How do we support continued engagement in creative production, even after youth leave our events and programs? As youth development educators and learning scientists interested in supporting long-term, interest driven learning around digital media, we took a crack at this problem, and we hope the lessons we share in this design case study might advance the ways that informal education organizations could think about promoting learning pathways that span contexts. The report we share here documents a series of design experiments that Mouse and Hive Research Lab collaborated on within the
In this research study, we explore the ways that youth engage in “interest signaling”, actions youth undertake that communicate their needs in ways that motivate adults and peers to mobilize resources to support them. We highlight how interest signaling is a key factor driving the process of brokering – signals are critical mechanisms for adults to understand what youth interests and expertise are, and, thus, be able to act as effective learning brokers. Through observing after-school digital media-making programs, and interviews we conducted with focal youth, program staff, and other support
This article makes a case for the importance of brokering future learning opportunities to youth as a programmatic goal for informal learning organizations. Such brokering entails engaging in practices that connect youth to events, programs, internships, individuals and institutions related to their interests to support them beyond the window of a specific program or event. Brokering is especially critical for youth who are new to an area of interest: it helps them develop both a baseline understanding of the information landscape and a social network that will respond to their needs as they
The Center for Advancing the Societal Impacts of Research (CASIR) will advance the rigor, relevance, and practice of broader impacts (BI) by (a) cultivating and strengthening the existent and emerging BI expert community; (b) building capacity of researchers and educators to enhance and articulate the broader impacts of their work; and (c) creating socio-technical infrastructure able to adapt to stakeholder needs as BI continues to grow and evolve. CASIR builds on the foundational work of the National Alliance for Broader Impacts and will advance the practice of translating scientific research for public understanding and meet the growing demand for innovative BI training and resources.
The Center will develop resources and provide professional development to diverse audiences across multiple institution types and settings, including research-intensive universities, minority-serving institutions, technical and community colleges, and primarily undergraduate institutions in the jurisdictions of the Established Program to Stimulate Competitive Research. CASIR will directly enhance BI capacity at the individual, departmental, institutional, and national levels. Particular focus will be given to individual researchers and institutions representing and serving traditionally under-served populations. In addition, CASIR will facilitate dialogue and collaboration around evidence-based approaches to enhancing, evaluating, and documenting research impacts. Overall, the work will be valuable to the community of researchers driving discovery, the community of professionals who provide BI support and collaboration with researchers, and the public which stands to benefit from research and education projects that are well-designed and executed in a way that enhances their broader impacts.
NSF-wide support for this Center augments the Foundation's current efforts to educate research communities about the importance of the broader impacts criterion in the review process and to communicate the societal benefits of fundamental science and engineering research. CASIR's emphasis on documentation, evidence, and best practices will support an evidence-building approach to investing in discovery and innovation.
This award is co-funded by the Office of Integrative Activities (OIA) and the following Directorates: Biological Sciences (BIO), Computer and Information Science and Engineering (CISE), Education and Human Resources (EHR), Engineering (ENG), Geosciences (GEO), Mathematical and Physical Sciences (MPS), and Social, Behavioral, and Economic Sciences (SBE).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.
The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.
This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
Brokering Youth Pathways was created to share tools and techniques around the youth development practice of “brokering” or connecting youth to future learning opportunities and resources.
This toolkit shares ways in which various out-of-school educators and professionals have approached the challenge of brokering. It provides a framework, practice briefs and reports that focus on a particular issue or challenge and provide concrete examples, as well as illustrate how project partners partners worked through designing new brokering routines in partnership with a research team.
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by bringing together youth (grades 2-5), their families, librarians, and professional engineers in an informal environment centered on engaging youth with age-appropriate, technology-rich STEM learning experiences fundamental to the engineering design process. The overarching aim is to better understand how youth's learning preferences or dispositions relate to their STEM learning experiences. It also seeks to build community members' capacity to inspire and educate youth about STEM careers. The project team includes the Space Science Institute's (SSI) National Center for Interactive Learning (NCIL), the University of Virginia (UVA) and the American Society of Civil Engineers (ASCE). This team builds on the scope and reach of a prior NSF-funded project called the STAR Library Education Network (STAR_Net). As an extension of this prior work, Project BUILD will collaborate with 6 public libraries (3 urban and 3 rural) and their local ASCE Branches. Two libraries have been selected to serve as pilots: High Plains Public Library in Colorado and the African-American Research Library and Cultural Center in Florida. All partner libraries will develop a plan for recruiting participants from groups currently underrepresented in STEM professions. Project BUILD's specific aims are to 1) Engage underserved audiences, 2) Build the capacity of participating librarians and ASCE volunteers, 3) Increase interest and engagement in STEM activities for youth in grades 2-5 and their families, and 4) Conduct a comprehensive education research project. Program components include the following: 1) Community Dialogue Events, 2) a Professional Development Program for partner librarians and ASCE volunteers, and 3) Development of a Technology-rich Programming Kit and Circulating STEM Kit program. Two research questions will be addressed: 1) What common factors might identify youth who engage in project activities and what factors might differentiate between youth who continue with program engagement and those who do not? and 2) What programmatic factors (i.e. design and composition of program activities, library recruitment, librarian engagement, professional engineer engagement, etc.) might influence youth's initial and continued engagement in project activities as well as youth's reported future career interests? An external evaluation will investigate the quality of the project's process as well as its impact and effectiveness. Benefits to the participating libraries' communities, library and engineering professionals, and the education community will be achieved through 1) Community Dialogue events; 2) Library and Librarian Outreach; 3) ASCE Outreach; and 4) Publication of Research and Evaluation results.