In response to a long-expressed focus on a museum's mission and its evaluation, this article explores an alternate model of multiple, intentional missions and purposes. While literature and theory assume that a single mission should guide a museum's decisions and actions, in practice, many US nonprofit museums are operating as community service museums, intentionally fulfilling a number of different purposes useful and desired by the community beyond the purpose stated in their mission. This article builds on Stephen E. Weil's theories to develop the rationale for measuring the value and
These audio presentation and transcript files are from a series of webinars about the NSF Advancing Informal STEM Learning (AISL) FY14 solicitation. "AISL Webinar 101: Introduction to the Solicitation" includes an overview of the AISL program, project types, preparing competitive proposals, the review process and NSF merit criteria, other relevant programs and resources, and contact information. "AISL Webinar 102: Digging Deeper into the Solicitation" focuses on key issues in the submission and review processes, examples of project types, an introduction to the Common Guidelines for Education
DATE:
TEAM MEMBERS:
National Science FoundationNational Science Foundation
SciStarter is the place to find out about, take part in, and contribute to science through citizen science, recreational activities and research projects. If you're a scientist or a representative of a citizen science organization or community group: This is the place to tell eager people about your work and get them interested in helping out. We aim to: 1) Enable and encourage people to learn about, participate in, and contribute to science through both informal recreational activities and formal research efforts; 2) Inspire greater appreciation and promote a better understanding of science and technology among the general public; 3) Create a shared space where scientists can talk with citizens interested in working on or learning about their research projects and 4) Satisfy the popular urge to tinker, build, and explore by making it simple and fun for people to jump in and get their hands dirty with science.
DATE:
TEAM MEMBERS:
SciStarter (a division of Science For Citizens)Darlene Cavalier
resourceresearchProfessional Development, Conferences, and Networks
The analysis contained in this report was prepared for the CAISE Convening on Broader Impacts & ISE. The report summarizes interviews with researchers in STEM subjects who were asked about: 1) their perceptions about broader impacts, 2) the planning and process that researchers undertake for broader impacts activities, 3) the resources and supports that currently exist and that researchers would like to exist for broader impacts activities, and 4) how the informal science education field might "market" itself as a potential place to find partners or venues for doing broader impacts activities
This is a presentation about the ScienceCenter Netzwork, a network of science centers and museums in Austria. The presentation was a part of the Summit on Informal Science Networks at the Association of Science-Technology Centers annual conference in Albuquerque, NM.
This full-scale development project will address the need for creative models to support STEM learning in underserved rural communities that lack traditional infrastructure such as science centers. The project will create and study an innovative model of capacity-building: viz., small networks of community-embedded “STEM Guides” will be trained to identify a range of existing STEM resources available in their local regions, and to connect STEM-interested youth with them in creative and personal ways. Anticipated learning outcomes for youth and families include greater awareness of and interest in STEM experiences and pathways. At the regional level, the project will build capacity through increasing the STEM Guides’ knowledge of local STEM opportunities, and by enhancing connections among STEM-related resources, programs, and industries. The project will implement and study STEM Guide networks in a staggered series of five low-income, rural regions, providing startup resources and professional development. The project will increase the frequency and depth of out-of-school STEM experiences for approximately 3,000 youth aged 10-18 at a relatively low cost, creating a national model for STEM capacity-building in rural settings. It is led by the Maine Mathematics and Science Alliance, with 4-H, Cornerstones of Science (library-based STEM) and Maine’s university system as collaborators. EDC is the primary external evaluator.
The National Research Council's (NRC) Board on Science Education will identify an expert study committee to develop a report identifying the criteria for successful out-of-school STEM learning based on evidence from successful practice. The committee will be informed by commissioned papers and by a 2-day public workshop that explores the current evidence. The report will be written for policy-makers, funders, non-profit and private industry representatives, and other representatives from civic society. The primary goal of the report will be to help these audiences better understand and more strategically support investments in out-of-school STEM education, and to encourage partnerships that promote the linking of out-of-school STEM learning to school-based learning. This study complements the NRC work done to produce the Successful K-12 STEM Education report and builds from prior NRC studies, especially Learning Science in Informal Environments, Surrounded by Science and Education for Work and Life: Developing Transferable Knowledge and Skills in the 21st Century.
The Albert Einstein Distinguished Educator Fellowship Program provides a unique professional development opportunity for K-12 educators to inform national STEM policy and improve communication between the STEM education community and national leaders. Albert Einstein Fellows spend eleven months working at the National Science Foundation, bringing extensive knowledge and classroom experience to STEM education programs. In addition, fellows are provided with an extensive program of professional development training during their cohort year. The Albert Einstein Fellows program is run by the non-profit Triangle Coalition for Science and Technology Education on behalf of the Department of Energy Office of Science. Other federal participants in the fellowship program include NASA, NOAA, and the U.S. Congress. In 2013-14, NSF will host seventeen Albert Einstein Fellows. The Albert Einstein Fellows program is designed to provide substantial STEM work experience beyond the confines of the classroom, as well as extensive training in the individual fields of science, technology, and engineering, STEM education policy, and STEM program outcomes. During the eleven-month fellowship, the Triangle Coalition provides programming that supports professional development in three broad goal areas: 1) development of leadership skills; 2) development as a STEM educator; and, 3) addressing grand challenges in STEM education. The Triangle Coalition engages a third-party evaluator to measure the efficacy of the professional development programming and the overall impact of the program. The evaluators will collect and analyze data that addresses the cumulative impact of the Albert Einstein Fellows program upon the participants and STEM programs with which they engage. The analysis will provide insight into fellows' diversity of experiences post-fellowship that can inform program analyses and research into STEM issues such as resource allocation, teacher preparedness, student interest, and minority participation in STEM. The Albert Einstein Distinguished Educator Fellows Program advances knowledge of STEM disciplines and the critical role educators play in advancing STEM learning and career development. The program increases STEM knowledge and pedagogical skills, provides an opportunity for building leadership capabilities as STEM experts, and assists educators with understanding the policy process. The fellowship equips educators to be STEM capacity-builders and problem-solvers for social, economic, and political challenges created or exacerbated by lack of STEM comprehension. The program also encourages broader diversity in STEM by recruiting in demographic sectors (race, ethnicity, location, etc.) that are historically underrepresented.
DATE:
-
TEAM MEMBERS:
Jessica BridgesAnthonette Pena
resourceprojectProfessional Development, Conferences, and Networks
The conference, Indigenous Worldviews in Informal Science Education, is designed to advance research on the integration of Native and Western science in relation to informal science learning. The goals of the conference are to integrate and synthesize research and theory, formulate a research agenda, and share the results with the STEM education community. The conference is organized around six strands: Collaboration, Policy, Holistic Education, Next Generation Youth, and Evaluation. A six-week preconference online discussion of conference issues leads into the two-day conference, held at Imiloa Astronomy Center in Hilo, Hawaii. The meeting brings together sixty participants including educators, research scientists, learning researchers, policymakers, and Native youth. The conference includes keynotes, workshops and synthesis discussion groups, which will be synthesized and presented at a policy outcome meeting held in Washington, DC that follows the conference. Conference results will be further disseminated at relevant conferences, in publications, and through online discussions. A full evaluation process will inform the detailed planning of the conference and will evaluate the effectiveness of the conference, based on responses from conference participants.
The Exploratorium, in partnership with Qualcomm, proposes to develop and test a highly accurate indoor positioning system (IPS) at full museum scale. Such a system would increase the feasibility and power of whole-visit research studies and open up opportunities for using IPS to support new and innovative informal STEM learning experiences. Within 3-5 years, museums will likely possess infrastructures capable of easily and effectively integrating IPS. The Exploratorium's project will generate early knowledge about using this technology for developing innovative programmatic strategies and for improving research and evaluation of STEM learning in museums. Program activities include developing processes for creating and updating indoor maps; testing IPS as a tool for program development and delivery; prototyping a research data management system; and the dissemination project findings.
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
This grant supports a workshop focused on catalyzing STEM education R & D in Sri Lanka and in the U.S. through networking and international collaboration. The workshop is a collaboration of the US Association of Science-Technology Centers (ASTC) and the National Science Foundation of Sri Lanka. Its focus is for ASTC to share its wealth of expertise with Sri Lanka in the creation of a science center in Colombo that will engage its people in an accessible science-learning environment and provide its youth with grounding in the scientific concepts and practices. The three day workshop to be held in Colombo, Sri Lanka, will engage these experts in the discussion and co-creation of a plan for a science center to be built in Sri Lanka, and to consider how to develop an ongoing relationship between informal STEM educators in the US and STEM educators in Sri Lanka. The workshop will cover subjects critical to the development of an effective and successful science center, including: (1) Inquiry-based learning and the development of effective exhibits and programs, (2) Evaluation tools and techniques, (3) Local scientific knowledge and expertise that can influence planning and programing, (4) Developing effective outreach programs, (5) Public Engagement with science and society issues, and (6) Managing a science center. While using the development of the science center as a focus for the meeting, the workshop will also initiate discussions between STEM educators in the South Asia region and the United States, with the goal of developing a long-term relationship between STEM educators in the South Asia region and the United States. One or more of the US speakers and the invited US doctoral student will explore and identify new research questions on STEM education and the role of science centers as a new model for improving human resource capacities in STEM in developing countries. The workshop outcome should also advance future international collaborations and inform efforts to serve immigrant populations from South Asia in the US. This award is designated as a Global Venture Fund Award and is being co-funded by NSF's Office of International Science and Engineering.