Resources are available to help educators teach nanotechnology topics and find curriculum materials for their classes, including published journal articles, video lectures, laboratory experiment procedures and in-person workshops. Educational materials shared by individual scientists and educators, nanotechnology research centers and professional organizations cover many fields of nanotechnology and all levels of education, both formal and informal. This article reviews these resources with the purpose of increasing their visibility and encouraging their use.
DATE:
TEAM MEMBERS:
Kurt WinkelmannLeonard BernasMahmoud Saleh
Rockman et al (REA), a San Francisco-based research and evaluation firm, conducted the external evaluation for Youth Radio's DO IT! program, which was funded by the National Science Foundation. Building upon Youth Radio's previous Science and Technology Program, the DO IT! initiative consisted of three primary components that promoted STEM (science, technology, engineering, and mathematics) learning by training underserved youth in cutting-edge digital technologies: (1) Brains and Beakers: Young people hosted a line-up of investigators and inventors for demo-dialogues at Youth Radio's studios
DATE:
TEAM MEMBERS:
Rockman et al | Youth RadioKristin BassJulia Hazer
COSI, in partnership with WOSU @ COSI, will be going forward with a project in which enhancements and other changes may be made to the WOSU exhibition space, entrance area, and adjacent hallway. This project may include, but is not limited to, introducing more elements of the PBS Kids brand, such as Sesame Street and Sid the Science Kid, into the exhibition space, introducing interactive elements regarding TV Production to the site, and adding loose parts to the Chroma Key exhibit. To inform decisions about the type and nature of enhancements most needed in the exhibit area, COSI desires to
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-11 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at the museums and in their own communities. The events focused on environmental topics that are especially relevant to urban communities, including broad topics such as climate change and the energy cycle to more specific topics such as animals and habitats in urban neighborhoods.
This poster was presented at the 2014 AISL PI Meeting in Washington DC. It describes the CLUES project that provides STEM education opportunities to families.
DATE:
TEAM MEMBERS:
New Jersey Academy for Aquatic SciencesBarbara Kelly
The Universally Designed Museum Programming project was envisioned as a way to create public programs that are more inclusive of people with disabilities. We used the concepts of universal design and Universal Design for Learning as well as our prior experiences with these topics in exhibition design and nanotechnology programming as a foundation for our work. Through this project, we gained insight into building a community of interest, facilitating a charrette in an inclusive way, using universal design guidelines to develop programs, and measuring the effectiveness of our process.
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
This Science Learning+ Planning Project will develop a prototype assessment tool (based on a mobile technology platform) to map STEM learning experiences across different learning ecologies (e.g. science centers, mass media, home environment) and to develop research questions and designs for a Phase 2 Science Learning+ proposal. The tool will focus on the impact of the learning ecologies on knowledge, interest, identity and reasoning rather than emphasize learning in a specific content area. The proposing team will develop and conduct a small scale usability study during the planning period, which will inform what is proposed in the Phase 2 research. A key focus of the planning period will be to identify and develop the theoretical constructs (i.e., outcomes) to be measured by the prototype App. As a starting point, the project will start with four of the six strands identified in Learning Science in Informal Environments (National Research Council, Bell et al., 2009): (1) interest triggered by a STEM experience; (2) understanding scientific knowledge; (3) engaging in scientific reasoning; and (4) identifying with the scientific enterprise. Discussion among the project partners during the planning process will revolve around how these strands should be measured in the Phase 2 research across ecologies. The measurement tool will assess the goal(s) that people set as they engage in STEM learning within each ecology and will measure the individuals' duration and level of engagement. The project will strive to utilize measures that: (1) are nonobtrusive; (2) are embedded in STEM experiences; (3) can be used across ecologies; (4) can be scaled for other ecologies than the ones examined in Phase 2 research; and (5) will be easy to use by researchers and practitioners.
DATE:
-
TEAM MEMBERS:
Bradley MorrisJohn DunloskyGreat Lakes Science CenterUniversity of LimerickIdeaStream (UK)Irish Independent newspaper
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE:
-
TEAM MEMBERS:
James DiamondNew York City Hive Learning NetworkMOUSEDigitalMeKatherine McMillan
Researchers and practitioners in the US and the UK, organized by Twin Cities Public Television in collaboration with co-PIs from Indiana University and the University of Bradford in the UK, will develop a research agenda focused on understanding how participation by youth in various online environments, called "affinity spaces," can promote and enable new approaches to informal STEM learning. Affinity spaces provide opportunities for youth to develop deep interest and engagement in specific topics as well as to interact in groups with others who share common interests. By focusing on affinity spaces, this Science Learning+ project will contribute to the collective understanding of how digital media supports STEM learning. Of particular interest is the potential of these spaces to offer multiple interest-driven trajectories, opportunities to learn with others, and paths toward becoming authentic participants in the discussions. Specifically, the collaborators will: (1) produce a literature review on affinity spaces and informal science learning; (2) organize and convene a two-day workshop to review and refine primary research questions; and (3) produce a white paper summarizing outcomes. Affinity spaces have the ability to connect millions of learners. Developing a research agenda to learn how these spaces can involve youth in experiences across the entire spectrum of STEM disciplines promises to reveal new ways to enhance and enrich the entire ecosystem of informal science learning. In addition, the project will enhance the international research and education infrastructure by facilitating collaborations among researchers in the U.S. and the UK who work at the frontiers of social media and learning.
This Science Learning+ project will develop research-and-practice activities to explore how an integrated art, STEM, and society (what we refer to as STEAM) approach can expand science engagement and learning of youth aged 15-19, from low-income and non-dominant cultural communities. The project will review current knowledge, practice, and trends related to underrepresented youth, STEAM, and science engagement. The review will be used to develop: (1) A cross-setting research framework for investigating the relationship between informal STEAM learning experiences and young people's developing engagement with science. (2) Design principles for out-of-school STEAM programs that have proven effective in cultivating youth engagement with science and making relevant cross-setting connections. (3) Practitioner-friendly program evaluation tools that integrate findings from current research and practice related to cross-setting science learning of young adults especially non-dominant youth as it relates to STEAM learning experiences.
This is a poster from the 2014 AISL PI Meeting in Washington, DC. It describes KC Empower, a project that explores after school science for children with disabilities.