This project continues the work of "Tinkering EU: Contemporary Education for Innovators of Tomorrow" that introduced Tinkering methodology in Europe. It also builds upon the work of "Tinkering EU: Building Science Capital for ALL" that explored Tinkering and Science Capital with a specific focus on teachers and students from disadvantaged communities. "Tinkering EU: Addressing the Adults" focusses on fostering the socio-educational and personal development of adults.
Tinkering, inspired by the USA-based experience of the Exploratorium of San Francisco, is proven to be a powerful tool that contributes to the improvement of key competences and skills, and connects science knowledge and skills with the requirements of the contemporary labour market.
The project aims to foster the socio-educational and personal development of adults, as well as their participation in civic and social life, focusing on the following priorities:
Stronger science engagement
Need for 21st Century skills
Low science capital
Coordinator: NEMO Science Museum - The Netherlands
Partners:
National Museum of Science and Technology Leonardo da Vinci – Italy
University of Cambridge – UK
Science Center Network – Austria
Traces – France
Centrum Nauki Kopernik – Poland
The informal science education (ISE) sector has an important role to play in addressing current societal issues, including changes in environmental conditions, systemic poverty, and societal responses to natural and manmade disasters. These complex social problems require engaging all sectors of society in deep discussions around science, engineering, technology, and mathematics (STEM) and inclusion, diversity, equity, and access (IDEA). To do this, ISE professionals need training in how to bring in diverse perspectives, support inclusive learning, and provide equal access to institutional policymaking, practices and systems. People from different backgrounds within informal science institutions (ISIs) and local communities bring new perspectives, identify new needs, and foster innovation. This broadening of perspectives is critical to address the complex social problems of the 21st century. A key part of the needed transformations in informal science institutions is the preparation of change agents within the ISE sector capable of reimagining what just and equitable informal science institutions might look like. iPAGE 2.0 is an NSF Advancing Informal STEM Learning (AISL) Innovations in Development project conducted by the Science Museum of Minnesota and the Garibay Group in concert with 27 ISIs from across the US. The overarching goal of the project is to support transformative change toward IDEA in the ISE sector. The project is based on an extension service model of knowledge diffusion which seeks to bridge the knowledge-to-action gap by creating intermediaries that can translate research into practical innovations that can be used by practitioners in ISIs. The project brings together teams of strategically placed individuals within ISIs and prepares them to work with their colleagues to enact research-based practices and practical organizational changes toward greater equity and diversity. This project is funded by the AISL program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This ISE professional development initiative will work with annual first-year cohorts consisting of leadership teams from 4-6 ISIs. Each new cohort will spend 11 days together in a 5-day institute and three 2-day colloquia either virtually or at the Science Museum of Minnesota. Individuals and teams will adapt, implement, and refine ideas, strategies, and tools from the iPAGE 2.0 framework for use within their specific ISI context and broader professional networks and engage in ongoing communication and consultation with the iPAGE 2.0 community. All individuals on the team will develop skills, such as communication and collaboration expertise, to function as change agents acting to transform their organizations with respect to inclusion, diversity, equity, and access (IDEA) in STEM. Participants from previous cohorts will continue their roles as change agents and enhance learning in the iPAGE 2.0 community by sharing what they have learned at iPAGE 2.0 colloquia. The iPAGE 2.0 framework focuses on developing participants' understanding of 1) how structural inequalities function to reproduce social advantage and disadvantage within ISIs and the ISE sector; 2) the barriers, supports, and transmission vectors that contribute to or inhibit a continued shift in the sector toward IDEA within a network of practitioners, organizations, evaluators and researchers; and 3) how to prepare and support diversity change agents within the network. The project will employ a creative evaluation approach that combines developmental, principles-focused, arts-based, and transformative evaluation and an interactive, mixed-methods research study grounded in culturally responsive methodologies to address central questions concerning individual, organizational, and sector change. The project's primary audience is ISE professionals, and the secondary audience is researchers and evaluators working within the ISE sector. The project will work directly with an estimated 122 individuals from 27 ISIs.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This AISL Pilots and Feasibility project will study the data science learning that takes place as members of the public explore and analyze open civic data related to their everyday lives. Government services, such as education, transportation, and non-emergency municipal requests, are becoming increasingly digital. Generally, program workshops and events may be able to support participants in using such data to answer their own questions, such as: "How do City agencies respond to noise in my neighborhood?" and "How do waste and recycling services in my neighborhood compare with others?" This project seeks to understanding how such programs are designed and facilitated to support diverse communities in accessing and meaningfully analyzing data will promote innovation and knowledge building in informal data science education. The team will begin by summarizing best practices in data science education from a variety of fields. Next they will explore the design and impacts of two programs in New York City, a leader in publicly available Open Data initiatives. This phase will explore activities and facilitation approaches, participants' objectives and data literacy skills practice, and begin to identify potential barriers to entry and levels of participation. Finally, the team will build capacity for other similar organizations to explore and understand their impacts on community members' engagement with civic data. This pilot study will establish preliminary evidence of the effectiveness of these programs, and in turn, inform future research into the identifying and amplifying best practices to support public engagement with data.
This research team will begin by synthesizing data science learning best practices based on varied literatures and surveys with academic and practitioner experts.
Synthesis results will be applied as a lens to gather preliminary evidence regarding the impacts of two programs on participants' data science practices and understanding of the nature of data in the context of civics. The programs include one offered by the Mayor's Office of Data Analytics (MODA), which is the NYC agency with overall responsibility for the City's Open Data programs, and BetaNYC, a leading nonprofit organization working to improve lives through civic design, technology, and engagement with government open data. The research design triangulates ethnographic observations and artifacts, pre and post adapted surveys, and interviews with participants and facilitators. Researchers will identify programmatic metrics and adapts existing measures to assess various outcomes related to public engagement with data, including: question formulation, data set selection and manipulation, the use of data to make inferences, and understanding variability, sampling and context. These metrics will be shared through an initial assessment framework for data science learning in the context of community engagement with civic open data. Researchers will also begin to identify barriers to broader participation through literature synthesis, interviews with participants and facilitators, and conversations with other organizations in our networks, such as NYC Community Boards. Findings will determine the suitability of the programs under study and inform future research to identify and amplify best practices in supporting public engagement with data.
This project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Addressing Societal Challenges through STEM (ASCs) received NSF AISL funding to conduct a Literature Review and Synthesis to answer the question: How are informal learning institutions advancing the use of STEM knowledge and scientific reasoning in the ways that individuals, families, and communities understand what they can do, and apply their learning to solving the societal challenges of our time? Using a definition of societal challenges based on research around the public understanding of social problems, this systematic literature review will identify, analyze, and synthesize three bodies of peer and field-reviewed literature (peer-reviewed journals, graduate theses, and evaluation reports of nationally-funded project).
Over the past decade, Informal STEM learning organizations have increasingly engaged in innovative ways to present STEM knowledge within the context of societal challenges such as climate change, energy sources, cyber-security, Nanotechnologies, coastal resilience, and other topics. These efforts significantly expand the traditional work of Informal STEM Learning (ISL) organizations, often leading to new types of interventions, partnerships, impacts, and assessment tools. Analyzing and interpreting the aggregate of this work will advance theoretical and practical knowledge about the potential of ISL’s in advancing the place of STEM in addressing societal challenges.
Demonstrating and articulating the characteristics of how ISL organizations are addressing societal challenges, encourages and informs the ways institutions can address the NSF strategic goal to “Advance the capability of the Nation to meet current and future challenges.” The project outputs aim to Enhance Knowledge-building, Build Capacity of the Field, and Maximize Strategic Impact by informing the strategies used by organizations and individuals. The results also aim to Broaden Participation by articulating the ways STEM knowledge is embedded and linked to personal experiences and choices.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will build and test a new model for co-created public engagement with science activities in partnership with civic, community, and scientist partners. The innovation to be tested is deliberative dialogues in science museums that help reduce the polarization about socio-scientific issues, giving people a greater voice in science, and addressing barriers that disconnect scientists from the public. The project will engage four target audiences (informal science education/ISE professionals, civic, community and scientist partners). Science museum partners include Museum of Science (MOS) Boston, Oregon Museum of Science, the Michigan Science Center, and the North Carolina Museum of Life and Science. The project is designed to have a strategic impact on how ISE institutions choose topics of STEM engagement and build public Forum programs.
There will be two evaluation teams for the project. MOS Research and Evaluation will act as formative evaluation mentors for the four partner sites as they co-create their forums. They will provide evaluation capacity building for the sites using team-based inquiry as they create and understand the potential impacts and outcomes of the model. Data collection will include panel surveys and focus groups. The evaluation will explore how the forums can decrease 1) public polarization around STEM topics and (2) the disconnect between scientists, civic organization, and the public. The external summative evaluation will be conducted by Rockman et al (REA). They will conduct a study of the project's process to help the team identify challenges and strategies for overcoming them as they work through the phases of public engagement. The summative study will focus on the project goals taking a qualitative approach. Early interviews with partner participants will explore their strengths and weaknesses in taking on this type of public engagement model including the extent of their previous work with civic partners. Later interviews will investigate what factors have enabled or hindered this project. Summative evaluation questions will also address changes in attitudes toward public engagement with science. REA will collect feedback from summit attendees through intercept interviews and post-surveys administered within a week at the event's conclusion to explore the any changes in knowledge or confidence in undertaking this type of model. REA will present findings from the external evaluation during the annual meeting of the Association of Science-Technology Centers and publish reports to Informalscience.org. Once the model has been developed and tested it will be disseminated to an initial group of 25-30 science museums and eventually to the entire ISE museum field.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The subject of physics and all of its sub-disciplines are becoming more prevalent in the public press as the research results appear to be quite interesting and important. While the physics discipline has made a Nation-wide effort to acquaint the public with physics knowledge through informal education learning experiences for years, it has not been as successful as the community desires. Thus, this project is aimed to gather all of the informal and outreach physics education efforts that have been attempted in the hope of finding the best practices for learning physics concepts and practices. A compendium will be published to inform future opportunities on how to educate the public through informal and outreach mechanisms. This project is a collaboration between Michigan State University and the University of Colorado. The physics community has a long history of engaging audiences in informal education activities. Physics institutions that facilitate informal programs include university departments, national laboratories and centers, and professional societies and organizations. There is, however, no systemic understanding of how these programs are facilitated, nor an assessment of the collective impact that these programs have on participants. This project will address numerous research questions in the broad areas of Activity Detail, Structural Aspects, and Assessment. Further, their efforts will determine the "who, what, why, where and how" of informal physics offerings, focusing on their facilitation, impact on participants, and the academic and discipline-specific cultures from which these programs originate. The study has several definite research outcomes that will emerge from this methodology: 1) They will produce a survey of the informal efforts of university physics departments, national physics labs and national physics organizations, 2) They will develop a taxonomy of informal physics programs from which we can characterize the landscape of programs, and 3) by investigating both "successful" as well as "failed" or terminated programs, they will develop an understanding of the culture and resources needed to support outreach from these research findings. In addition, they will produce published works that can be utilized by informal practitioners and administrators in physics to examine current programs and guide the development of new programs. With regards to the research questions and framework, the overarching and driving question for this research project is: "What is the landscape of informal physics learning, specifically, of those programs in the United States facilitated by physicists and physics students at academic institutions, national labs and by national physics organizations?" This study will provide a robust understanding of the state of informal physics programs and outreach by physicists in the United States today. Findings will inform practitioners and administrators as to how best to support and design informal physics programming. The results will also have broad implications for other discipline-specific informal STEM programming. The primary data collection methods will be a nationwide survey and interviews with a large sample of informal practitioners from the physics community. Site visits will be conducted with a subset of these programs in order to observe programs in action and to glean insights from university participants, community partners, public, and K-12 audiences.
Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The Smart and Connected Communities (SCC) program supports strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. This project is a Research Coordination Network (RCN) that focuses on achieving SCC for medium/small size, remote, and rural communities through a polycentric (multiple centers) integrated policy, design, and technology approach. The communities served by the RCN have higher barriers to information, resources, and services than larger urban communities. To reduce this gap, the PIs propose to develop need-based R&D pipelines to select solutions with the highest potential impacts to the communities. Instead of trying to connect under-connected communities to nearby large cities, this proposal aims to develop economic opportunities within the communities themselves. This topic aligns well with the vision of the SCC program, and the proposed RCN consists of a diverse group of researchers, communities, industry, government, and non-profit partners.
This award will support the development of an RCN within the Commonwealth of Virginia which will coordinate multiple partners in developing innovations utilizing smart and connected technologies. The goal of the research coordination network is to enable researchers and citizens to collaborate on research supporting enhanced quality of life for medium, small, and rural communities which frequently lack the communication and other infrastructure available in cities. The research coordination network will be led by the University of Virginia. There are 14 partner organizations including six research center partners in transportation, environment, architecture and urban planning, and engineering and technology; two State and Industry partners (Virginia Municipal League and Virginia Center for Innovative Technology); four community partners representing health services (UVA Center for Telemedicine), small and remote communities (Weldon Cooper Center), neighborhood communities (Charlottesville Neighborhood Development), and urban communities (Thriving Cities); and two national partners which support high speed networking (US-Ignite) and city-university hubs (MetroLab). Examples of research coordination include telemedicine services, transportation services, and user-centric and community-centric utilization and deployment of sensor technologies.
DATE:
-
TEAM MEMBERS:
Ila BermanT. Donna ChenKaren RheubanQian Cai
Often called "self-plagiarism," text recycling occurs frequently in scientific writing. Over the past decade, increasing numbers of scientific journals have begun using plagiarism detection software to screen submitted manuscripts. As a result, large numbers of cases of text recycling are being identified, yet there is no consensus on what constitutes ethically acceptable practice. Text recycling is thus an increasingly important and controversial ethical issue in scientific communication. However, little actual research has been conducted on text recycling and it is rarely addressed in the ethical training of researchers or in scientific writing textbooks or websites. To promote the ethical and appropriate use of text recycling, this project will be conducted in two phases: In Phase 1, the researchers will investigate the ethical, practical, and legal aspects of text recycling as relevant for professional researchers, students, and publishers. In Phase 2, the investigators will produce educational materials and develop model language for text recycling guidelines and author-publisher contracts that can be adapted by educational institutions, research organizations, and publishers.
This project is a multi-institutional, multidisciplinary investigation of text recycling, the reuse of material from one?s previous work in a new manuscript. In Phase 1, the researchers will investigate questions such as these: What do expert researchers, students, and others involved in scientific communication believe to be appropriate practice, and why? Where is there a clear consensus among experts and where is there substantive disagreement? How often do professional scientists actually recycle material, and in what ways? Under what circumstances does text recycling violate publisher contracts or copyright laws? One facet of this research will involve interviewing and surveying experienced STEM faculty, students, journal editors, and others regarding the ethics of text recycling. A second facet will analyze a corpus of published scientific papers to investigate how researchers recycle text in practice and how this has changed over time. The third facet involves analyzing publisher contracts to better understand the rights of publishers and authors regarding text recycling and to assess their legal validity. In Phase 2, the investigators will use findings from Phase 1 to develop, test, and disseminate two kinds of materials: The first are web and print based instructional materials for STEM students (and others new to STEM research) explaining the ethical, legal, and practical issues involved with text recycling, as well as accompanying documents for faculty, administrators, and librarians. The second are model policies and guidelines for text recycling that address appropriate practice in both academic and professional settings. The investigators will obtain feedback on drafts of these materials from potential users and revise them accordingly, after which they will be disseminated.
DATE:
-
TEAM MEMBERS:
Cary Moskovitz
resourceprojectProfessional Development, Conferences, and Networks
The Center for Advancement of Informal Science Education (CAISE) is a National Science Foundation (NSF) funded resource center, working in cooperation with the NSF Advancing Informal STEM Learning (AISL) program to build and advance the informal STEM education field. CAISE continues the work it began in 2007--serving professional audiences in informal STEM learning, which includes those working in science centers and museums, zoos and aquariums, parks, botanical gardens and nature centers, events and festivals, libraries, making and tinkering spaces, media (TV, radio, film, social), cyberlearning and gaming, and youth, community, and out-of-school time programs.
What We Do:
CAISE seeks to characterize, highlight, and connect quality, evidence-based informal STEM learning work supported by a diversity of federal, local, and private funders by providing access to over 8,000 (and growing) resources that include project descriptions, research literature, evaluation reports and other documentation on the InformalScience.org website. In addition, CAISE convenes inquiry groups, workshops and principal investigator meetings designed to facilitate discussion and identify the needs and opportunities for informal STEM learning.
In this award, CAISE is also tasked with advancing and better integrating the professional fields of informal STEM learning and science communication by (1) broadening participation in these fields, (2) deepening links between research and practice, and (3) building capacity in evaluation and measurement. These activities are being undertaken by cross-sector task forces of established and emerging who will be responsible for conducting field-level analyses, engaging stakeholders, and creating roadmaps for future efforts. CAISE is also building on existing communication channels for dissemination to the larger field, and through the InformalScience.org website. An External Review Board and Inverness Research are providing oversight of CAISE's program activities and evaluation of the center.
Who We Are:
CAISE operates as a network of core staff housed at the Association of Science-Technology Centers (ASTC) in Washington, D.C. and co-principal investigators and other collaborators at academic institutions and informal STEM education (ISE) organizations across the U.S. Other key collaborators are the American Association for the Advancement of Science's Center for Public Engagement with Science, the National Informal STEM Education Network, and Arizona State University.