With the ongoing need for water conservation, the American Southwest has worked to increase harvested rainwater efforts to meet municipal needs. Concomitantly, environmental pollution is prevalent, leading to concerns regarding the quality of harvested rainwater. Project Harvest, a co-created community science project, was initiated with communities that neighbor sources of pollution. To better understand how a participant’s socio-demographic factors affect home characteristics and rainwater harvesting infrastructure, pinpoint gardening practices, and determine participant perception of
DATE:
TEAM MEMBERS:
Arthur MosesJean McLainAminata KilungoRobert RootLeif AbrellSanlyn BuxnerFlor SandovalTheresa FoleyMiriam JonesMonica Ramirez-Andreotta
Through desk-based research and expert interviews, this study set out to investigate how funders and policy makers could drive coordination and improvements in the evaluation of youth engagement with STEM. The study explored the current landscape of evaluating youth engagement with STEM, gaps and challenges and key learnings from the evaluation practice in other sectors and key initiatives. Between February and March 2022, 18 project and programme evaluation reports and papers were reviewed, approximately 40 academic papers were analysed and synthesised, and 14 experts were interviewed.
This summary brief captures highlights from the evaluation report for the first year of the NSF-funded WaterMarks project (also available on this page). The purpose of this document is to communicate key updates from evaluation in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
This is the evaluation report for the first year of the NSF-funded WaterMarks project. It reflects an initial summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward. This report contains descriptions of embedded measures (i.e. anonymized drawings and reflections captured on a thematic postcard) included in community walks and analyses of secondary data (i.e., interviews conducted by other members of hte project team), as well as reflections emerging from the
The COVID-19 pandemic tested many fundamental connections between science and society. A growing field working to strengthen those connections exists within the informal STEM learning (ISL) community which provides diverse learning and engagement environments outside the formal classroom. One of the largest funders of ISL initiatives is the National Science Foundation (NSF) which runs the Advanced Informal STEM Learning (AISL) program in the United States. The AISL program supports initiatives through six categories that include pilots and feasibility studies, research in service to practice
Centering Native Traditional Knowledge within informal STEM education programs is critical for learning for Native youth. In co-created, place-based learning experiences for Native youth, interweaving cultural traditions, arts, language, and community partnerships is vital for authentic, meaningful learning. Standardized STEM curricula and Western-based pedagogies within the mainstream and formal education systems do not reflect the nature of Native STEM knowledge, nor do they make deep connections to it. The absence of this knowledge base can reinforce a deficit-based STEM identity, which can directly impact Native youths’ participation and engagement in STEM. Reframing STEM education for Native youth to prioritize the vitality of community and sustainability requires active consideration of what counts as science learning and who serves as holders and conduits of STEM knowledge. As highly regarded holders of traditional and western STEM knowledge, Native educators and cultural practitioners are critical for facilitating Native youths’ curiosity and engagement with STEM. This Innovations in Development project is Native-led and centers Native knowledge, voice, and contributions in STEM through a culturally based, dual-learning approach that emphasizes traditional and western STEM knowledge. Through this lens, a network of over a dozen tribal nations across 20 U.S. states will be established to support and facilitate the learning of Traditional and Western STEM knowledge in a culturally sustaining manner. The network will build on existing programs and develop a set of unique, interconnected, and synchronized placed-based informal STEM programs for Native youth reflecting the distinctive cultural aspects of Native American and Alaska Native Tribes. The network will also involve a Natives-In-STEM Role Models innovation, in which Native STEM professionals will provide inspiration to Native youth through conversations about their journeys in STEM within cultural contexts. In addition, the network will cultivate a professional network of STEM educators, practitioners, and tribal leaders. Network efforts and the formative evaluation will culminate in the development and dissemination of a community-based, co-created Framework for Informal STEM Education with Native Communities.
Together with Elders and other contributors of each community, local leads within the STEM for Youth in Native Communities (SYNC) Network team will identify and guide the STEM content topics, as well as co-create and implement the program within their sovereign lands with their youth. The content, practitioners, and programming in each community will be distinct, but the community-based, dual learning contextual framework will be consistent. Each community includes several partner organizations poised to contribute to the programming efforts, including tribal government departments, tribal and public K-12 schools, tribal colleges, museums and cultural centers, non-profits, local non-tribal government support agencies, colleges and universities, and various grassroots organizations. Programmatic designs will vary and may include field excursions, summer and after school STEM experiences, and workshops. In addition, the Natives-In-STEM innovation will be implemented across the programs, providing youth with access to Native STEM professionals and career pathways across the country. To understand the impacts of SYNC’s efforts, an external evaluator will explore a broad range of questions through formative and summative evaluations. The evaluation questions seek to explore: (a) the extent to which the culturally based, dual learning methods implemented in SYNC informal STEM programs affect Native youths’ self-efficacy in STEM and (b) how the components of SYNC’s overall theoretical context and network (e.g., partnerships, community contributors such as Elders, STEM practitioners and professionals) impact community attitudes and behaviors regarding youth STEM learning. Data and knowledge gained from these programs will inform the primary deliverable, a Framework for Native Informal STEM Education, which aims to support the informal STEM education community as it expands and deepens its service to Native youth and communities. Future enhanced professional development opportunities for teachers and educators to learn more about the findings and practices highlighted in the Framework are envisioned to maximize its strategic impact.
DATE:
-
TEAM MEMBERS:
Juan ChavezDaniella ScaliceWendy Todd
The Science Museum of Virginia will launch a three-year initiative that empowers participants to effect change in their neighborhoods using citizen science as a tool. The museum will lead a team of residents, business owners, government officials, nonprofits, and health system partners in assessing air quality concerns at the neighborhood level and implementing evidence-based solutions. The museum will also introduce a new platform and interactive software system to display air quality data from this project as well as other visualizations reflecting citizen science data captured in other initiatives. An external evaluator will conduct front-end and formative evaluation to address challenges as they occur and assist the museum in disseminating learnings from the project to the field. The project is designed to build community consensus on strategies necessary to build resilience to climate change while strengthening the museum’s position as a catalyst for science-based decision-making.
This project continues the work of "Tinkering EU: Contemporary Education for Innovators of Tomorrow" that introduced Tinkering methodology in Europe. It also builds upon the work of "Tinkering EU: Building Science Capital for ALL" that explored Tinkering and Science Capital with a specific focus on teachers and students from disadvantaged communities. "Tinkering EU: Addressing the Adults" focusses on fostering the socio-educational and personal development of adults.
Tinkering, inspired by the USA-based experience of the Exploratorium of San Francisco, is proven to be a powerful tool that contributes to the improvement of key competences and skills, and connects science knowledge and skills with the requirements of the contemporary labour market.
The project aims to foster the socio-educational and personal development of adults, as well as their participation in civic and social life, focusing on the following priorities:
Stronger science engagement
Need for 21st Century skills
Low science capital
Coordinator: NEMO Science Museum - The Netherlands
Partners:
National Museum of Science and Technology Leonardo da Vinci – Italy
University of Cambridge – UK
Science Center Network – Austria
Traces – France
Centrum Nauki Kopernik – Poland
Diversity, Equity, Access and Inclusion (DEAI) work in museums is multifaceted, but typically approached from the perspective of external audiences and outcomes rather than a change in internal organizational culture. This article discusses findings from a research study examining what happened in five US science museums that were making a concerted, officially recognized effort towards internal change, and explores what those findings reveal about field-wide barriers to appreciable systemic change along with the impacts of the current status quo on marginalized staff. This study focused
The ICBOs (Independent Community-based Organizations), a group of fifteen community representatives from communities historically excluded from the sciences, share results from eight years of community-led de-colonial participatory action research. We wrote this white paper to share our findings and recommendations with funders like the National Science Foundation. These findings, recently published in BioScience (https://doi.org/10.1093/biosci/biac001), along with preliminary results from our current research, and our lived experiences point towards a critical need to change the existing
DATE:
TEAM MEMBERS:
Karen PurcellBobby WilsonMakeda CheatomJohn AnnoniTanya Schuh
resourceprojectProfessional Development, Conferences, and Networks
Developing solutions to large-scale collective problems -- such as resilience to environmental challenges -- requires scientifically literate communities. However, the predominant conception of scientific literacy has focused on individuals, and there is not consensus as to what community level scientific literacy is or how to measure it. Thus, a 2016 National Academies of Sciences, Engineering, and Medicine report, “Science Literacy: Concepts, Contexts, and Consequences,” stated that community level scientific literacy is undertheorized and understudied. More specifically, the committee recommended that research is needed to understand both the i) contexts (e.g., a community’s physical and social setting) and ii) features of community organization (e.g., relationships within the community) that support community level science literacy and influence successful group action. This CAREER award responds to this nationally identified need by iteratively refining a model to conceptualize and measure community level scientific literacy. The model and metrics developed in this project may be applied to a wide range of topics (e.g., vaccination, pandemic response, genetically-modified foods, pollution control, and land-use decisions) to improve a community’s capacity to make scientifically-sound collective decisions. This CAREER award is funded by the Advancing Informal STEM Learning (AISL) and the EHR CORE Research (ECR) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the ECR program goal to advance relevant research knowledge pertaining to STEM learning and learning environments.
The proposed research will conceptualize, operationalize, and measure community level scientific literacy. This project will use a comparative multiple case study research design. Three coastal communities, faced with the need to make scientifically-informed land-use decisions, will be studied sequentially. A convergent mixed methods design will be employed, in which qualitative and quantitative data collection and analyses are performed concurrently. To describe the i) context of each community case, this project will use qualitative research methods, including document analysis, observation, focus groups, and interviews. To measure the ii) features of community organization for each community case, social network analysis will be used. The results from this research will be disseminated throughout and at the culmination of the project through professional publications and conference presentations as well as with community stakeholders and the general public. The integrated education activities include a professional learning certificate for informal science education professionals and STEM graduate students. This certificate emphasizes high-quality community-engaged scholarship, placing students with partners such as museums, farmer’s markets, and libraries, to offer informal learning programs in their communities. This professional learning program will be tested as a model to provide training for STEM graduate students who would like to communicate their research to the public through outreach and extension activities.