The Lost Ladybug Project (LLP) is a Cornell University citizen science project that connects science to education by using ladybugs to teach non-scientists concepts of biodiversity, invasive species, and conservation. The project has successfully engaged thousands of children (ages 5-11) in collecting field data on ladybugs and building a ladybug biology database that is useful to scientists. It has also reached 80,000 people over the Internet. The goal of the project is to promote lifelong appreciation of biodiversity and science, and provide scientists with data on the changing distribution and abundance of ladybug species across the country. The current project is broadening the Lost Ladybug Project's reach geographically, culturally, demographically, and contextually by creating new tools and materials for the website, and forging new connections with (1) youth groups, (2) science centers, community centers, botanical gardens, nature centers, and organic farms, (3) adults, (4) Native Americans, and (5) Spanish-speakers. The expanded project could potentially involve tens of thousands of new individuals in ladybug monitoring research. An evaluation study is measuring the impacts of the expansion on new participants' knowledge, skills, attitudes, interests, and behavior. The Lost Ladybug Project has been important in advancing scientific discovery and building scientific knowledge. Data collected by the project's volunteers have improved scientists' understanding of (1) ladybug species presence/absence, (2) shifts in ladybug species composition, (3) shifts in ladybug species ranges, and (4) change in ladybug body size and spot number. Evaluation data show that the project has a broad audience reach and is achieving its learning goals for adults and children. Broadening the project's reach will further increase the project's importance to ecology, conservation biology and biodiversity research, as well as education research.
The Maryland Science Center, in partnership with SK Films, Inc. received NSF funding to produce a large format, 2D/3D film and multi-component educational materials and activities on the annual migration of monarch butterflies, their life cycle, the web of life at select sites where they land, and the citizen science efforts that led to the monarch migration discovery. Project goals are to 1) raise audience understanding of the nature of scientific investigation and the open-ended nature of the scientific process, 2) enhance and extend citizen science programs to new audiences, and 3) create better awareness of monarch biology, insect ecology and the importance of habitat. Innovation/Strategic Impact: The film has been released in both 3D and 2D 15/70 format. RMC Research Corporation has conducted evaluation of the project, both formatively and summatively, including a study of the comparable strengths of the 2D and 3D versions of the film. RMC has conducting formative evaluation and is currently conducting summative evaluation to assess the success of project materials in communicating science and achieving the project's learning goals. Collaboration: This project employs a collaborative model of partnerships between the project team and the National Science Teachers Association (NSTA), the University of Minnesota's Monarchs in the Classroom and Monarch Watch. Project advisors represent world-renown monarch butterfly research scientists and educators, including Dr. Karen Oberhauser, named a "Champion of Change" by President Obama in June 2013, and Dr. Chip Taylor, founder and director of Monarch Watch at the University of Kansas.
The Museum of Science, Boston (MOS) and its primary collaborators, the Science Museum of Minnesota (St. Paul, MN) and the Exploratorium (San Francisco, CA), are continuing and expanding the Nanoscale Informal Science Education Network (NISE Net), which has been in operation since 2005. NISE Net has established a national infrastructure of over one-hundred hands-on science centers and universities within seven regional hubs with the goal of fostering public awareness, engagement and understanding of nanoscale science and engineering (NSE). As part of this undertaking, NISE Net partners have: - created a nation-wide set of annual events called NanoDays; - developed dozens of interactive exhibits, media-based products, programs, and public forums based on NSE; - generated new knowledge about the design for learning about NSE, its applications, and societal implications; - produced a network that involves informal educators and researchers; and - developed a Web site for professionals, www.nisenet.org, that includes several resources for educators and researchers, including a catalog of educational products. During the next five years (2010 - 2014), NISE Net will continue to develop new educational products, deepen the involvement of current partnerships in nanoscale informal science education, and expand the number of partners overall to 300 organizations. The advisory committee, content steering committee, regional hubs, and other work groups will continue to develop collaborative relationships between museums and university-based NSE research centers, including Materials Research Science and Engineering Research Centers (MRSECs) and Nanoscale Science and Engineering Centers (NSECs). A Diversity, Equity, and Access group will actively support, foster, and encourage the NISE Net\'s efforts to reach diverse audiences with regard to geography, dis/ability, gender, race/ethnicity, language, and income. Four research studies will be conducted: Partnership and Network, Institutional Change, Learning Progressions, and Evidence-Based Decision Making.
Three and a half billion people currently live in cities, and this is projected to rise to six billion by 2050. In much of the world, cities are warming at twice the rate of rural areas and the frequency of urban heat waves is expected to increase with climate change throughout the 21st century. Addressing the economic, environmental and human costs of urban heat islands requires a better understanding of these complex systems from many disciplinary perspectives. The goal of this four-year Urban Heat Island Network is to advance multidisciplinary understanding of urban heat islands, examine how they can be ameliorated through engineering and design practices, and share these new insights with a wide array of stakeholders responsible for managing urban warming so that the health, economic, and environmental impacts can be reduced.
DATE:
-
TEAM MEMBERS:
Peter SnyderPatrick HamiltonBrian StoneTracy TwineJ. Marshall Shepherd
resourceprojectProfessional Development, Conferences, and Networks
This award is funded under NSF's Science, Engineering, and Education for Sustainability (SEES) activities, which aim to address the challenges of creating a sustainable world. Research Coordination Network (RCN) CE3SAR (Climate, Energy, Environment, and Engagement in Semiarid Regions) is a comprehensive partnership of researchers at South Texas regional institutions and major research universities elsewhere advancing knowledge of science, engineering and education for sustainability (SEES). The network will develop and test an innovative model for conducting interdisciplinary, region-specific, sustainability research closely tied to the needs and interests of highly-engaged local stakeholders. RCN CE3SAR will aggregate regional research capacities specific to sustainability in semiarid climates contiguous to the Gulf of Mexico while leveraging research expertise infused from outside the region. Geographic information science (GIS) will play a key role in the process of integrating layers of scientific data, producing scientific insight and presenting new ideas, new research directions and new scientific knowledge to regional stakeholders as well as the scientific community. The network will align regional capacities that heretofore were largely disconnected and bring focus and synergy to a range of research that will profoundly impact the region and its socioeconomic future. The network will engage and educate regional communities, government and private-sector stakeholders throughout the process.
DATE:
-
TEAM MEMBERS:
Luis CifuentesJorge VanegasGary JeffressRudolph RosenWesley Patrick
A national facility a three-system ground-based mobile radar fleet, the Doppler On Wheels (DOWs). The three systems include two mobile X-band Doppler on Wheels and the 6 to 12 beam "Rapid Scan DOW". These radar systems have participated in research projects that have covered a broad range of topics including individual cumulus cloud studies, orographic precipitation and dynamics, hydrologic studies, fire weather investigations, severe convective storms and tropical cyclones at landfall. DOWs can be frequently utilized on site for educational activities, such as being part of a university atmospheric instrumentation courses. The DOWs can be operated by students with minimal, often remote, technical supervision. The DOWs add significantly to the facility infrastructure of the atmospheric sciences community.
DATE:
-
TEAM MEMBERS:
Joshua Wurman
resourceresearchProfessional Development, Conferences, and Networks
This research agenda is a living document, constructed in response to on-going field-wide conversations following the 21st Century Natural History Settings Conference at the Smithsonian Museum of Natural History. At the conference, natural history professionals explored new directions for museums and other natural history institutions, including zoos, aquaria, botanical gardens, and nature centers. The research agenda is intended to be edited, discussed, and fleshed out by the field as we work together and make progress. New research questions will emerge spurred by surprising findings
Advances in genomics are rapidly increasing our understanding of not only the human body, disease and health-related issues but how humans and other species interact and respond to changing environments. Genomics represents a scientific frontier that connects with individuals and families at the most personal level, with the potential to shape the future of human healthcare. However, advances in genomics and their implications for personalized medicine are far out-pacing public awareness and knowledge. The Connecticut Science Center and the University of Connecticut partnered under a National Science Foundation funded collaboration between Dr. Rachel O'Neill, UCONN, and Dr. Hank Gruner, Connecticut Science Center, and the National Center for Science & Civic Engagement to engage the public in developing a conceptual understanding of genomics.
DATE:
-
TEAM MEMBERS:
Connecticut Science CenterRachel O'NeillHank Gruner
The overall goal of the current proposal is to adapt the interdisciplinary research-based curriculum created at the School for Science and Math at Vanderbilt (SSMV) for implementation of a four-year program in three Metropolitan Nashville Public School (MNPS) high schools. The specific aims of the proposal are to adapt the on-campus (at Vanderbilt) model for implementation in three public high schools with different academic profiles (SSM Academies); to define the variables and features required to sustain the program and to replicate the model in any high school setting; and to define a strategy for disseminating the model to additional schools. Students entering 9th grade in a school in which an SSM Academy has been implemented will be encouraged to apply. Those who are accepted into the program will spend three hours every other day in two courses based on the adapted curriculum. As with the SSMV, rising seniors will have opportunities to enter Vanderbilt laboratories for summer research internships. Teachers from the high school will work with Center for Science Outreach scientists to adapt the SSMV curriculum for implementation. Ongoing, year-long teacher professional development will be conducted to ensure that the curriculum is dynamic and the teachers are well-prepared to engage and guide the students in the curriculum. The anticipated outcomes include enhanced student achievement as measured by GPA, and scores on ACT science reasoning and end of course tests; increased SSM student interest in careers in science; increased district-wide enrollment in SSM programs; increased graduation rates and postsecondary education enrollment by SSM students; development of unique curricular science units that can be adapted for a novel four-year interdisciplinary research- based curriculum; development of a sustainable model built on effective features of each SSM that can be exported to other high schools within and outside Nashville; enhanced community and family involvement in the SSM programs and school community in general; a strengthened partnership between Vanderbilt and MNPS that will serve as a national model of a successful university-K-12 collaboration to enhance science teaching and learning.
Through "Addressing the Science of Really Gross Things: Engaging Young Learners in Biomedical Science Through a Fulldome Planetarium Show and Supporting Curricula," Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill, in close collaboration with NIH-funded researchers at the UNC and a leading children's book author, will develop an informal science education media project and a suite of hands-on, inquiry-based curricula based on the media project for use in science centers, museums and schools. This project will build the pipeline of future researchers and create awareness of NIH-funded research by generating interest and excitement among children age 9-13 in the health sciences and related careers and building their science content knowledge. To achieve the objective, the investigators will develop a fulldome planetarium show; create correlating curricula for summer camps, afterschool programs, scout programs, science center field trips, science clubs and schools; and produce a DVD highlighting careers in the health sciences. In addition, the project will use several methods to target populations traditionally underrepresented in the biomedical fields, including featuring professionals from underrepresented populations in the multimedia and curricula products, making outreach visits to counties with large populations traditionally underrepresented in health science research careers, and producing a Spanish-language version of the products. The use of a known brand, "Grossology," is an innovative way to connect to children in the target age range and to encourage the informal science education community to embrace health-science content in their fulldome theaters. In addition, the project's hub-and-spoke approach further encourages adoption of this programming by providing informal science venues with both an engaging experience (hub) and the supporting curricula (the spokes) that is necessary to extend the show's potential for having significant educational impact. A strong project team maximizes the project's likelihood for success. The team includes fulldome producers and educators from Morehead and NIH-funded researchers with expertise in appropriate science content areas. In addition, the investigators have created a network of consultants, advisory board members and evaluators that will create feedback loops designed to ensure high-quality, scientifically-accurate, educationally-effective products. The investigators will use a combination of free and revenue-based dissemination strategies to ensure that the products of this award are broadly distributed. These strategies hold significant promise for creating broad use of this project's products in the nation's science centers, museums and classrooms.
The American Museum of Natural History requests SEPA support for a five-year development and implementation project entitled "Human Health and 'Human Bulletins': Scientists and Teens Explore Health Sciences in the Museum and World At Large." The program has three complementary components: (1) the development of 7 new productions for the Museum's digital media/documentary exhibition program, Human Bulletins http://sciencebulletins.amnh.org) featuring the newest health-related research; (2) a mini-course, entitled Hot Topics in Health Research NOW, an intensive after school program covering genetics, epidemiology, human health and human evolution, including a section on ethics in research; and (3) A "drop-in" Human Bulletins Science Club, where students meet monthly to watch a Human Bulletin visual news program, engage in informal discussions with significant researchers in the fields of evolutionary science and human health. The main goals of this project are: (1) to inform young people about emerging health-related research by using the Human Bulletins as core content for programming and points of engagement; (2) to promote a life-long interest in science among participants by teaching them how health-related science research could potentially affect them or their families; (3) to empower teens to critically assess the science presented to them in the Museum and in the world at large by teaching them to break down the "information bytes" of the Human Bulletins and to analyze how stories are presented visually and how to find answers to questions raised by the Bulletins; (4) for the young people in the program to see themselves as participants in the Museum by developing "mentor" relationships with Museum staff. This will allow students to see AMNH as an enduring institution to be used as a resource throughout their education and careers; and (5) to give students the means to envision themselves with future careers in science, research and in museums (thus fostering new generation of culturally-diverse, culturally enriched scientific leaders) by introducing them to scientists in an informal setting where there are no consequences for making mistakes or asking questions. The students will be given "behind the scenes" looks at new career options through the scientists featured in the Bulletins and the NIH funded researchers on the Advisory Board presenting at the informal sessions. Ultimately, the project aims to give students to critically process the information they receive about public health, see the relevance of human health science to their lives and pursue careers in health science. All of these skills are measurable through formative and summative evaluation. This project will teach young people to understand information about public health that is presented to them through visual and popular media as well as through formal scientific texts. It will also teach them to think about how human health sciences impact their lives and how the decisions they make impact larger human health. Finally, the program will also encourage students to pursue careers and further information about public health.
This project will introduce students ages 8-14, including underserved students; their teachers and families; and the general public to three biomedical research areas inspired by NIH's Roadmap for Medical Research: biological pathways, bioinformatics and nanomedicine. These areas are unfamiliar to many adults and are not introduced in science curricula. Using the metaphor of a hardware store (i.e., building materials, tools, parts, home repair projects), the project will introduce families, students and teachers to three ideas: (1) The body maintains and repairs itself at the molecular, cell, tissue, organ and system levels; (2) Biomedical researchers are uncovering new complexities at the molecular level that can increase our understanding of how the body works; and (3) Developments in nanomedicine can lead to discoveries and treatments. In a hardware store theater and workshop space and in a virtual hardware store, the project will develop and present demonstrations and basic- and intermediate-level labs (for 2nd- and 6th-grade students or families); train museum staff and interns to present the programs; offer orientation workshops to teachers from Title I schools; develop a teacher's guide; conduct outreach in middle schools; engage scientists to talk about their work and help them communicate with the public; and create a manual of materials and activities for other science centers. The evaluation plan will include formative research on activities and assessment of how well repair metaphors facilitate understanding of clinical issues. A team of scientists, museum staff, science teachers, and biology and medical students will guide the development of education components.