Through this review of research on public engagement with science, Feinstein, Allen, and Jenkins advocate supporting students as “competent outsiders”—untrained in formal sciences, yet using science in ways relevant to their lives. Both formal and informal settings can be well suited for work in which students translate scientific content and practices into meaningful actions.
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
Science STARS (Stars Tackling Authentic & Relevant Science) is an after-school program that will engage approximately 400 urban middle school girls in authentic inquiry-based scientific investigations and the creation of a science documentary that extends their research and situates their findings. The project has been piloted in Rochester, NY and will be expanded to sites in Lansing, MI and Seattle, WA. New elements have been added to enhance the project experience including the documentary video component, partnerships with local community outreach organizations, mentoring by local female scientists, leveraging embedded assessments to enhance the measurement of learning, and a conference and presentations to local stakeholders to showcase the work of the participants. Participants will meet during the school year plus three intensive weeks during the summer for a total of about 65 hours per year. A unique feature of this project is the use of pre-service teachers from local teacher preparation programs to facilitate the investigations. This in turn develops the capacity of pre-service teachers to implement and leverage inquiry-based learning in their practice. Project-level research will address questions of how models such as this encourage the development of positive science identities in girls and how situating science investigations in their community affects their understanding of science and local issues. The project evaluation will be conducted by Horizon Research and will focus on the quality of project activities, the quality of the project\'s research plan, and the impact on participants and pre-service teachers. Science STARS thoughtfully bridges formal and informal learning environments. While Science STARS largely situates its home base in schools in order to increase access to those who may not self-identify with science, the program is designed to capitalize on the unique affordances of informal settings and contribute to understanding how informal science education can be used to nurture positive science identities for urban middle school girls.
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
Design-based research (DBR) is a method for testing educational theories while simultaneously studying the process of creating and refining educational interventions. In this article, Sandoval proposes “conjecture mapping” as a technique to guide DBR processes. Conjecture mapping responds to critiques that DBR lacks clear standards and methodological rigor.
A midpoint progress poster on the Sparks of Discovery Project which connects UW-Madison NSF researchers to produce interdisciplinary science investigations that will be/have been implemented in a number of settings, including participants from underrepresented groups in science. Wisconsin Alumni Research Foundation (WARF) along with the Morgridge Institute for Research staff support the project and implement the education programs at the Wisconsin Institutes for Discovery. This poster was presented at the 2014 AISL PI Meeting in Washington, DC.
DATE:
TEAM MEMBERS:
University of Wisconsin, MadisonTravis Tangen
This CRPA award addresses the issue of multidisciplinary science and the public's awareness of the ideas. The PIs believe that the prevalence of multidisciplinary science is high and growing fast. Thus, the public and particularly the younger generations need to understand these concepts and to begin thinking in those terms. Thus, they will derive hands-on modules for three age groups that are age appropriate. The project team includes 7 NSF funded researchers who do multidiscipline-based research in biology, mathematics and engineering. These modules will be tested at the Boy and Girls Club of Dane County prior to being exhibited at the Madison Children's Museum and the Aldo Leopold Nature Center. Further, the local PBS TV station (WPT) will air some of the demonstrations giving the project more visibility and impact. Each set of modules designed for the three age groups shall be evaluated separately using age specific goals and objectives. The project is a collaboration between 7 scientists and engineers, the Boys and Girls Club of Dane County, the Aldo Leopold Nature Center, the Madison Children's Museum, and the Wisconsin Institutes of Discovery of the University of Wisconsin.
This is the poster for the CCI Solar Fuels and Westside Science Club collaboration presented by Michelle Hansen and Benjamin Dickow at the 2014 AISL PI meeting in Washington DC.
DATE:
TEAM MEMBERS:
California Institute of Technology Center for Chemical InnovationMichelle Hansen
This poster provides an overview, program goals, evaluation plan, and research questions for the AISL project, Techbridge Broad Implementation: An Innovative Model to Inspire Girls in STEM Careers. The poster was presented at the 2014 AISL PI Meeting.
The Coalition for Science After School was launched January 28, 2004 at the Santa Fe Institute, home to the world’s leading researchers on the study of complexity. Against the dazzling backdrop of the New Mexican mesa, 40 educational leaders from diverse but overlapping domains—science, technology, engineering and mathematics education and after-school programs—met to grapple with three emerging, important trends in youth development and science learning in this country: 1. An explosion in the number of U.S. youth attending after-school programs, and increasing links between school and after
DATE:
TEAM MEMBERS:
The Coalition for Science After SchoolLeah Reisman
From March 26-28, 2014, the Coalition for Science After School (CSAS) hosted its final summit, Passing the Torch: Advancing Opportunity for Quality Science Learning. The Summit was intended to: (1) celebrate a decade of progress in strengthening and expanding STEM learning opportunities in out-of-school time; (2) call attention to critical issues in ensuring that all young people have opportunities for quality STEM experiences in their local communities; and (3) stimulate ideas, strategies, partnerships and commitments to continue to increase opportunities for quality STEM experiences across
DATE:
TEAM MEMBERS:
The Coalition for Science After SchoolLeah Reisman
Journey to Space will be a large-scale traveling exhibition that simulates a journey to the International Space Station (ISS), allows visitors to explore the physical properties of low gravity environments, and introduces some of the engineering and technology that makes it possible to live and work in space. A collaborative project led by the Science Museum of Minnesota joined by the California Science Center and the three other members of the Science Museum Exhibit Collaborative, the exhibition will encourage museum visitors 1) to immerse themselves in the sights, sounds, and smells that astronauts experience traveling to, and living in, space; 2) to engage as problem solvers with some of the unique engineering challenges that must be solved to support living and working in space; and 3) to experience life aboard the International Space Station interpreted through the voices of engineers, scientists, and astronauts. In addition to the exhibition, the project will include a public website and a two-year youth program for underserved teens that will result in a three-day Celebration of Space Exploration Chautauqua aimed especially at underserved families in the Twin Cities metropolitan area. The exhibition will tour to twelve major science museums across North America and reach upwards of three and a quarter million families, adults, teachers, and students over six years.
DATE:
-
TEAM MEMBERS:
Eric JollyPaul MartinJ. Shipley Newlin