This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Living Laboratory is a model for museum-academic partnership that aims to educate the public about child development by immersing museum visitors in the process of scientific discovery. Living Laboratory embraces a "mutual professional development" philosophy, in which museum educators and scientists share their expertise with one another through a variety of regular interactions.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Indianapolis: City as a Living Laboratory (NSF Grant #DRL-1323117) examines how different public art mediums can serve as conduits for informal science learning at a city-wide scale.
This presentation from the 2016 NSF Advancing Informal STEM Learning (AISL) Principal Investigators' Meeting presents an overview of the AISL Online Project Monitoring System (OPMS), including a report-out of findings from the data collected from projects funded between FY2006-FY2014.
This special issue of Science Education & Civic Engagement contains articles on work occurring in a variety of informal STEM education settings, and is dedicated to the memory of former CAISE co-Principal Investigator and adviser Alan Friedman. It was provided in hard copy form to 2016 NSF AISL PI meeting participants.
These slides were presented at the NSF Advancing Informal STEM Learning (AISL) Principal Investigators' Meeting held in Bethesda, MD from February 29-March 2, 2016. The presentation describes NSF INCLUDES, a funding opportunity that leverages collective impact strategies to broaden participation in STEM.
These slides provide an overview of current NSF funding opportunities, including Dear Colleague Letters and foundation-wide mechanisms. The presentation occurred as a technical assistance session at the 2016 NSF AISL PI Meeting.
Even in the best-resourced science communication institutions, poor quality evaluation methods are routinely employed. This leads to questionable data, specious conclusions and stunted growth in the quality and effectiveness of science communication practice. Good impact evaluation requires upstream planning, clear objectives from practitioners, relevant research skills and a commitment to improving practice based on evaluation evidence.
Access to high quality evaluation results is essential for science communicators to identify negative patterns of audience response and improve outcomes. However, there are many good reasons why robust evaluation linked is not routinely conducted and linked to science communication practice. This essay begins by identifying some of the common challenges that explain this gap between evaluation evidence and practice. Automating evaluation processes through new technologies is then explicated as one solution to these challenges, capable of yielding accurate real-time results that can directly
King et al. [2015] argue that ‘emphasis on impact is obfuscating the valuable role of evaluation’ in informal science learning and public engagement (p. 1). The article touches on a number of important issues pertaining to the role of evaluation, informal learning, science communication and public engagement practice. In this critical response essay, I highlight the article’s tendency to construct a straw man version of ‘impact evaluation’ that is impossible to achieve, while exaggerating the value of simple forms of feedback-based evaluation exemplified in the article. I also identify a
AAAS describes public engagement with science as intentional, meaningful interactions that provide opportunities for mutual learning between scientists and members of the public. Through the Alan I. Leshner Leadership Institute for Public Engagement with Science, AAAS empowers scientists and engineers to practice high-impact public engagement by fostering leaders who advocate for critical dialogue between scientists and the public and lead change to enable their communities, institutions, and others to support public engagement. This bibliography, with additional work on understanding
Recent years have brought a shift in the rhetoric of science communication from initial deficit models to practices involving dialogue and, finally, engagement. But to what extent has this rhetorical shift changed practice in the U.K.? Jensen and Holliman analysed practitioners’ views of their science communication practices. Findings indicate that science communication practice is still primarily deficit-based, with some incidence of dialogue-oriented thinking.
How do people make sense of conflicting beliefs? Although Gottlieb & Wineburg’s paper is about highly educated professionals reading history, informal science educators will recognize similar issues when working with people who hold beliefs incompatible with scientific ways of understanding the world. “Epistemic switching” was a way of considering criteria for truth, reliability, and validity according to one belief system or another. Rather than simply believing or excluding ideas as people who held to only one value system, the people with multiple, competing affiliations actually more