The New York Hall of Science (NYSCI), in collaboration with O\'Reilly Media will host a two-day workshop to explore the potential for the kinds of making, designing, and engineering practices celebrated at Maker Faire to enrich science and math learning. The purpose of this workshop is to identify and aggregate successful programming strategies that increase student engagement and proficiency in STEM, with a focus on students underrepresented in STEM careers. The meeting will be organized around three main ideas: catalyzing a national Maker movement; dissemination and scaling of design principles; and assessment of impacts on STEM learning and attitudes. The convening highlights the capacity of making activities to impact student motivation, attitudes, and conceptual understanding in STEM in both informal and formal learning environments. The workshop will be held in conjunction with the World Maker Faire at NYSCI on September 18-19, 2011. The World Maker Faire is a two-day, family-friendly event that celebrates the Do-it-Yourself or DIY movement and brings together a broad community of professionals and laypersons with a common interest in technology-based creativity, tinkering, and the reuse of materials and technology. The proposed workshop extends the work of the previous Maker Faire workshop (DRL 10-46459) by identifying initiatives that bridge the Maker and STEM communities while building students' foundational STEM knowledge and engaging audiences underrepresented in STEM careers. This workshop will accommodate approximately 50 local and national scientists, engineers, learning science researchers, educators, policymakers, and philanthropists. Select participants will present detailed case studies of maker programs, design principles, assessments, and measured outcomes in STEM attitudes and learning. Key elements of successful programs and assessment strategies will be identified across the case studies in brainstorming sessions and roundtable discussions. Following the workshop, a subset of the case studies will be compiled into an edited volume, indexed by the dimensions of student learning in the National Research Council publication, "A Framework for K-12 STEM Education: Practices, Crosscutting Concepts and Core Ideas." This project uses the momentum of the popular Maker Faire movement, based in design, engineering and technology concepts, to connect to STEM education while capitalizing on the strengths of informal learning environments. The workshop provides researchers, practitioners, and policymakers with an aggregated collection of program design principles and reliable metrics for documenting changes in preK-20 STEM attitudes and learning. The edited volume has the potential to advance the understanding of how to bridge formal and informal learning environments, while also fostering research on the affective dimensions of making in diverse audiences.
University of Washington researchers and their collaborators are evaluating the impacts and effectiveness of a citizen science program called COASST (Coastal Observation and Seabird Survey Team) that engages 600 trained non-scientists in collecting data on beached birds found on more than 300 beaches from the north coast of California to Alaska. The goals of the COASST program are to expand coastal citizen involvement in scientifically meaningfully science and improve the use of citizen science as a tool for scientific inquiry and resource management. Project personnel are analyzing current COASST materials and activities to determine (1) the best uses of COASST bird data, (2) how to maximize engagement of coastal citizens in COASST\'s scientific activities, (3) how to increase COASST participant learning, skills development, awareness and action, and (4) how to scale up the project by developing additional materials and facilitating adoption of the COASST model by other organizations around the country. The analysis includes an evaluation study of the existing beached bird instructional module to identify successful components for future use and determine whether the balance between automation and individualization of components, such as the materials, website, and training, optimizes participant experience. The project team is also working with current participants, marine scientists, and marine natural resource managers via surveys, focus groups and design and testing groups, to determine what other types of data are important for citizen scientists to collect. The project's findings will help researchers understand how citizens, scientists, and resource managers can partner to engage the public in rigorous citizen science activities, create a flexible citizen science program that can be scaled-up demographically and geographically, and work with new and existing COASST participants, COASST data end-users, and potential COASST model adopters to meet new scientific, educational, and resource management needs.
The University of Minnesota is partnering with several nature centers in the Midwest to transform citizen "technicians" into citizen "scientists." The Driven to Discover project will use existing citizen science programs with strong educational components to engage 12-14 year old youth and their adult mentors in authentic research. The goal of the project is to develop a training model for adults who work with youth in a variety of informal education settings to involve them in authentic scientific inquiry via citizen science rather than just data collection activities. In the proof-of-concept phase, teams consisting of 4-H youth, adult leaders, and several scientists are conducting participatory action research to understand what factors lead youth to full engagement in ecological research. In phase two, project personnel are training 4-H educators, naturalists, and teachers how to engage youth and their adult leaders in other 4-H programs and other informal education programs to conduct ecological research with scientists in advisory roles. Phase one involves approximately 10 adults and 70 youth, whereas phase two involves approximately 40 adults and 300 youth. A front-end study defined the project's target audiences and partners. Formative evaluation study will monitor interactions among members of the research teams and summative evaluation will measure impacts on participants' knowledge, skills development, attitudes, and behavior. Project deliverables include youth-generated ecological research findings, web-based program implementation materials, an annual conference, and a model for engaging youth groups in informal settings in authentic scientific inquiry. The model is expected to impact more than six million youth nationwide.
DATE:
-
TEAM MEMBERS:
Karen OberhauserNathan MeyerAndrea Lorek StraussPamela NippoltKatie ClarkRobert Blair
Boston's Museum of Science (MOS), with Harvard as its university research partner, is extending, disseminating, and further evaluating their NSF-funded (DRL-0714706) Living Laboratory model of informal cognitive science education. In this model, early-childhood researchers have both conducted research in the MOS Discovery Center for young children and interacted with visitors during the museum's operating hours about what their research is finding about child development and cognition. Several methods of interacting with adult visitors were designed and evaluated, including the use of "research toys" as exhibits and interpretation materials. Summative evaluation of the original work indicated positive outcomes on all targeted audiences - adults with young children, museum educators, and researchers. The project is now broadening the implementation of the model by establishing three additional museum Hub Sites, each with university partners - Maryland Science Center (with Johns Hopkins), Madison Children's Museum (with University of Wisconsin, Madison), and Oregon Museum of Science and Industry (with Lewis & Clark College). The audiences continue to include researchers (including graduate and undergraduate students); museum educators; and adults with children visiting the museums. Deliverables consist of: (1) establishment of the Living Lab model at the Hub sites and continued improvement of the MOS site, (2) a virtual Hub portal for the four sites and others around the country, (3) tool-kit resources for both museums and scientists, and (4) professional symposia at all sites. Intended outcomes are: (1) improve museum educators' and museum visiting adults' understanding of cognitive/developmental psychology and research and its application to raising their children, (2) improve researchers' ability to communicate with the public and to conduct their research at the museums, and (3) increase interest in, knowledge about, and application of this model throughout the museum community and grow a network of such collaborations.
The Lost Ladybug Project (LLP) is a Cornell University citizen science project that connects science to education by using ladybugs to teach non-scientists concepts of biodiversity, invasive species, and conservation. The project has successfully engaged thousands of children (ages 5-11) in collecting field data on ladybugs and building a ladybug biology database that is useful to scientists. It has also reached 80,000 people over the Internet. The goal of the project is to promote lifelong appreciation of biodiversity and science, and provide scientists with data on the changing distribution and abundance of ladybug species across the country. The current project is broadening the Lost Ladybug Project's reach geographically, culturally, demographically, and contextually by creating new tools and materials for the website, and forging new connections with (1) youth groups, (2) science centers, community centers, botanical gardens, nature centers, and organic farms, (3) adults, (4) Native Americans, and (5) Spanish-speakers. The expanded project could potentially involve tens of thousands of new individuals in ladybug monitoring research. An evaluation study is measuring the impacts of the expansion on new participants' knowledge, skills, attitudes, interests, and behavior. The Lost Ladybug Project has been important in advancing scientific discovery and building scientific knowledge. Data collected by the project's volunteers have improved scientists' understanding of (1) ladybug species presence/absence, (2) shifts in ladybug species composition, (3) shifts in ladybug species ranges, and (4) change in ladybug body size and spot number. Evaluation data show that the project has a broad audience reach and is achieving its learning goals for adults and children. Broadening the project's reach will further increase the project's importance to ecology, conservation biology and biodiversity research, as well as education research.
The University of Pittsburgh's Center for Learning in Out-of-School Environments (UPCLOSE), the Carnegie Museum of Natural History, and the Robotics Institute at Carnegie Mellon University are building an open access cyberlearning infrastructure that employs super high-resolution gigapixel images as a tool to support public understanding, participation, and engagement with science. Networked, gigapixel image technology is an information and communication technology that creates zoomable images that viewers can explore, share, and discuss. The technology presents visual information of scientifically important content in such detail that it can be used to promote both scientific discovery and education. The purpose of the project is to make gigapixel technology accessible and usable for informal science educators and scientists by developing a robotic imaging device and online services for the creation, storage, and sharing of billion-pixel images of scientifically important content that can be analyzed visually. Project personnel are conducting design activities, user studies, and formative evaluation studies to support the development of a gigapan technology platform for demonstration and further prototyping. The project builds on and leverages existing technologies to provide informal science education organizations use of gigapixel technology for the purpose of facilitating three types of activities that promote participatory learning by the public--Public Understanding of Science activities; Public Participation in Scientific Research activities; and Public Engagement in Science activities. The long-terms goals of the work are to (1) create an accessible database of gigapixel images that informal science educators can use to facilitate public-scientist interactions and promote participatory science learning, (2) characterize and demonstrate the affordances of networked gigapixel technologies to support socially-mediated, science-focused cyberlearning experiences, (3) generate knowledge about how gigapixel technology can enable three types of learning interactions between scientists and the public around visual data, and (4) disseminate findings that describe the design, implementation, and evaluation of the gigapixel platform to support participatory science learning. The project\'s long-term strategic impacts include guiding the design of high-resolution images for promoting STEM learning in both informal and formal settings, developing an open educational resource and science communication platform, and informing informal science education professionals about the use and effectiveness of gigapixel images in promoting participatory science learning by the public.
The Maryland Science Center, in partnership with SK Films, Inc. received NSF funding to produce a large format, 2D/3D film and multi-component educational materials and activities on the annual migration of monarch butterflies, their life cycle, the web of life at select sites where they land, and the citizen science efforts that led to the monarch migration discovery. Project goals are to 1) raise audience understanding of the nature of scientific investigation and the open-ended nature of the scientific process, 2) enhance and extend citizen science programs to new audiences, and 3) create better awareness of monarch biology, insect ecology and the importance of habitat. Innovation/Strategic Impact: The film has been released in both 3D and 2D 15/70 format. RMC Research Corporation has conducted evaluation of the project, both formatively and summatively, including a study of the comparable strengths of the 2D and 3D versions of the film. RMC has conducting formative evaluation and is currently conducting summative evaluation to assess the success of project materials in communicating science and achieving the project's learning goals. Collaboration: This project employs a collaborative model of partnerships between the project team and the National Science Teachers Association (NSTA), the University of Minnesota's Monarchs in the Classroom and Monarch Watch. Project advisors represent world-renown monarch butterfly research scientists and educators, including Dr. Karen Oberhauser, named a "Champion of Change" by President Obama in June 2013, and Dr. Chip Taylor, founder and director of Monarch Watch at the University of Kansas.
The Institute for Learning Innovation, in collaboration with Mary Miss Studio and the Institute for Urban Design, is conducting an exploratory research and development project on sustainable practices related to the built infrastructure of New York City. The work will (1) pilot test and study new interpretive strategies for urban "place-based" public learning experiences that focus pedestrians' attention on a city's ecology and existing built sustainability infrastructure; (2) engage urban design professionals and STEM researchers to explore how these new strategies have the potential to transform how urban design fields inform, dialog and interact with the public about sustainable urban design and planning; and (3) assess the effectiveness of these public interpretation programs on STEM learning beyond traditional Informal Science Learning Environments (ISEs) such as science museums. Project participants also include faculty from the City College of NY Graduate Program in Urban Design, STEM faculty from Columbia University, and staff of the Provisions Library in Washington, D.C. The project is an early phase of the "City as Living Laboratory" initiative that can leverage the Rockefeller Foundation-funded Urban Design Week program in New York City scheduled to occur September 15 - 20, 2011. This request to NSF adds an additional track to the process to specifically focus on STEM learning and urban sustainability. From the promotional materials: "The Institute for Urban Design is currently preparing for the first annual Urban Design Week, a public festival created to engage New Yorkers in the fascinating and complex issues of the public realm and celebrate the city's exceptional urbanity. Through a rich roster of charettes, summits, installations, film screenings, exhibitions, and tours, Urban Design Week will draw in citizens from every borough and walk of life and highlight the idea that cities are made by collective effort, and that each of us can be a part of that great endeavor." The project goal is to generate new models for public engagement with science in the city environment and to explore how urban designers and planners, as they design for sustainability, can more effectively collaborate with STEM researchers and with the public. The project has both research and programmatic deliverables. Research activities include: Public Audiences: observational study of pedestrians in the installation environment; intercept surveys of the public about their experiences with the streetscape installations. Professional Audiences: pre-installation surveys on the role of public space science interpretation for altering public discourse about urban planning and sustainable cities; focus group assessment of professionals\' experiences with observing public interactions with the installations; online delayed- post experience survey on learning outcomes in terms of knowledge, attitude, motivation and anticipated impacts on professional practices; analysis of blog postings and public media surrounding the installation; survey of attendees at an ISE forum on the project, its goals, outcomes and potential for future developments. Programmatic deliverables include: a workshop that engages urban design students in the development of experimental streetscape installations; a pilot installation on streets in the City College of NY (consistent with approvals already received by NYC Dept. of Transportation); a City as Living Laboratory art-science workshop for Urban Design Week professionals to highlight possible benefits of inter-disciplinary collaboration; a panel discussion around new forms of citizen engagement through a "city as a science learning environment"; a forum specifically for ISE professionals to explore the research findings and potential for use as a strategy to increase science learning in city places.
The California Environmental Legacy Project is a new kind of educational media project. Through an integrated package of programs and media resources, it seeks to build public understanding about about environmental change and the deep and inextricable connections we have with the natural world. The Project has three interwoven media programs: "Becoming California," is a two-hour public television documentary that takes a fresh look at our past, present and future relationship with California's changing environment. Produced for a national public television audience, the target for broadcast is summer 2014. The Changing Places Initiative is a package of regional films created for selected state and national parks in California. Produced as standalone and companion programs to the broadcast program, the films are planned for release in park visitor centers beginning in summer 2014. A companion website aims to increase public understanding of environmental change by integrating the project's video program into an engaging and interactive user interface that offers streaming video, educational resources and social networking tools. Audience Research is a key element of the project that guides development of its media and provides feedback on its overall effectiveness. Project partners include California State Parks, the National Park Service and U.S. Geological Survey. KQED-TV in San Francisco is serving as its presenting station for PBS broadcast. The Project is led by team of distinguished scientists, leading educators and award-winning media professionals.
DATE:
-
TEAM MEMBERS:
James BaxterKit TylerJeffrey WhiteDavid Scheerer
The Fusion Science Theater National Training and Dissemination Program builds on the success of the Fusion Science Theater (FST) planning grant (DRL 07-32142). Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the FST model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics. The primary target audience is children aged 4-11, while undergraduate chemistry students, faculty, and formal and informal educators comprise the secondary professional audience. The project will result in the development of a robust, creative, and highly visible national dissemination program. The National Training and Dissemination Program includes three deliverables. First, a Distance Performance Training Program will be developed to teach groups of undergraduate students, faculty, and educators how to perform FST Science Investigation (SI) Shows. The Training Program includes a Performance Training Package and a 3-day Performance Training Workshop. The Performance Training Package will be comprised of training videos, performances videos, scripts, rehearsal schedules, and training exercises. These materials will be pilot tested while training representatives of five groups from around the country to perform SI Shows during the Performance Training Workshop at Madison Area Technical College in summer 2012. Participants will be selected from ACS undergraduate groups, outreach specialists, and museum professionals. Workshop participants then return to their home institutions and lead their groups through the improved Performance Training Package delivered via Moodle, with support from FST team members and social networking tools. The second deliverable is the FST Methods Workshop. The Methods Workshop is designed to teach formal and informal educators to use selected methods (Investigation Question, Embedded Assessment, and Act-It-Out) in their outreach efforts and classroom teaching. Four workshops will be presented at national meetings and at the invitation of colleges, universities, and science centers. Follow-up with workshop participants will be mediated through an online forum to encourage experimentation, modification, and dissemination of a second generation of FST activities. The final project deliverable is the development and implementation of a Promotion and Recruitment Plan to connect professional audiences with FST. The Distance Performance Training Program and workshops will be evaluated using mixed methods, while embedded assessment will be utilized to measure the impact on youth participants attending SI shows to determine the overall effectiveness the Distance Performance Training. This project is designed to have important impacts on STEM education and society. The proposed dissemination program brings innovative models and methods into the hands of informal science education practitioners who can use them to engage local audiences and enhance their own teaching and communication practices. Finally the project offers likely benefits for society through the creation and dissemination of innovative practices to combat science illiteracy, diminishing pools of scientists and engineers, lack of understanding about the nature of science, and the achievement gap that exacerbates these problems. This project could be transformative in informal science education as SI Shows use theater to engage audiences in multiple aspects of science learning. It is anticipated that this project will reach up to 2,500 individuals in public and professional audiences.
The Museum of Science, Boston (MOS) and its primary collaborators, the Science Museum of Minnesota (St. Paul, MN) and the Exploratorium (San Francisco, CA), are continuing and expanding the Nanoscale Informal Science Education Network (NISE Net), which has been in operation since 2005. NISE Net has established a national infrastructure of over one-hundred hands-on science centers and universities within seven regional hubs with the goal of fostering public awareness, engagement and understanding of nanoscale science and engineering (NSE). As part of this undertaking, NISE Net partners have: - created a nation-wide set of annual events called NanoDays; - developed dozens of interactive exhibits, media-based products, programs, and public forums based on NSE; - generated new knowledge about the design for learning about NSE, its applications, and societal implications; - produced a network that involves informal educators and researchers; and - developed a Web site for professionals, www.nisenet.org, that includes several resources for educators and researchers, including a catalog of educational products. During the next five years (2010 - 2014), NISE Net will continue to develop new educational products, deepen the involvement of current partnerships in nanoscale informal science education, and expand the number of partners overall to 300 organizations. The advisory committee, content steering committee, regional hubs, and other work groups will continue to develop collaborative relationships between museums and university-based NSE research centers, including Materials Research Science and Engineering Research Centers (MRSECs) and Nanoscale Science and Engineering Centers (NSECs). A Diversity, Equity, and Access group will actively support, foster, and encourage the NISE Net\'s efforts to reach diverse audiences with regard to geography, dis/ability, gender, race/ethnicity, language, and income. Four research studies will be conducted: Partnership and Network, Institutional Change, Learning Progressions, and Evidence-Based Decision Making.
Madison Area Technical College will refine and evaluate the effectiveness of Fusion Science Theater (FST), a combination of theater, science demonstrations, and participatory components, as an ISE teaching model, to test its transferability through development and trials of an exportable version (Science-in-a-Box), and to recruit appropriate partners nationally in preparation for a larger scale implementation and evaluation. A Fusion Science Theater event utilizes the collaborative effort of applied expertise in science, theater and education. These events support playful interactions as characters engage the emotions of the audience. The Act-It Out sequences invite children and parents to become involved in modeling scientific concepts, thus creating an environment where learning is the product of social interaction and kinesthetic, affective and interpersonal learning. To provide proof-of-concept that this a transferable model, an independent, interdisciplinary team from the University of Wisconsin, Madison Biotechnology Center will produce their own FST event that will be evaluated and compared to an existing FST program. The Madison Children's Museum will partner as a venue for the event and provide expertise in the planning process. The ultimate project resulting from this planning would include workshops to train collaborative teams from around the country in the principles and practices of FST, promotion of cross-disciplinary collaboration among professionals, and honing of an evaluation design for FST events. The trained teams would then produce FST events that reach children, their parents and the general public. The planning grant project design includes activities necessary to further test, verify and document Fusion Science Theater events. It provides a proof of concept of model effectiveness and transferability. It also initiates, develops and assesses ways to train other groups to implement the model and publicizes the model to national professional networks to spread the work and recruit site teams.