In 2007, Carnegie Corporation of New York joined with the Institute for Advanced Study to create a commission, comprised of some of our nation’s most distinguished mathematicians, scientists, educators, scholars, business leaders, and public officials, to assess not only the current state of math and science education in the U.S. but also how to enhance the capacity of our schools and universities to generate innovative strategies across all fields that will increase access to high-quality education for every student in every classroom.
DATE:
TEAM MEMBERS:
Carnegie Corporation and the Institute for Advanced Study
resourceresearchProfessional Development, Conferences, and Networks
Science, technology, engineering, and mathematics (STEM) permeate the modern world. The jobs people do, the foods they eat, the vehicles in which they travel, the information they receive, the medicines they take, and many other facets of modern life are constantly changing as STEM knowledge steadily accumulates. Yet STEM education in the United States, despite the importance of these subjects, is consistently falling short. Many students are not graduating from high school with the knowledge and capacities they will need to pursue STEM careers or understand STEM-related issues in the
DATE:
TEAM MEMBERS:
Steve OlsonJay LabovNational Research Council
STEM learning ecosystems harness unique contributions of educators, policymakers, families, and others in symbiosis toward a comprehensive vision of science, technology, engineering, and math (STEM) education for all children. This paper describes the attributes and strategies of 15 leading ecosystem efforts throughout the country with the hope that others may use their lessons to deepen rich STEM learning for many more of America’s children.
Learning In and Out of School in Diverse Environments is the product of a two-year project during which a panel convened by the LIFE Center (an NSF Science of Learning Center) and the Center for Multicultural Education identified important principles that educational practitioners, policy makers, and future researchers can use to build upon the learning that occurs in the homes and community cultures of students from diverse groups. This report lays out an argument for focusing on cross setting learning as key to equity in STEM education.
DATE:
TEAM MEMBERS:
The LIFE Center (The Learning in Informal and Formal Enivronments Center)University of WashingtonJames BanksKathryn AuArnetha BallPhilip BellEdmund GordonKris GutierrezShirley HeathCarol LeeYuhshi LeeJabari MahiriNa'ilah Suad NasirGuadalupe ValdesMin Zhou
Funded by the National Science Foundation (NSF),The STEM Pathways project focused on exploring strategies through which at-risk and incarcerated Hispanic youth could be engaged around STEM careers, understand the education, training, and skills they would need to attain them, and think that such a path was a future possibility. To this end, the project and evaluation teams collaborated on a literature review, the development of a logic model, and the design, implementation, and evaluation of a diverse set of program activities that included media, art, and flash mentoring with STEM role models
As a part of the strategy to reach the NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forum Objective 1.2: Provide resources and opportunities to enable sharing of best practices relevant to SMD education and public outreach (E/PO), the Informal Education Working Group members designed a nationally-distributed online survey to answer the following questions: 1. How, when, where, and for how long do informal educators prefer to receive science, mathematics, engineering, and/or technology content professional development? 2. What are the professional development and