Since the 1950s, under congressional mandate, the U.S. National Science Foundation (NSF) - through its National Center for Science and Engineering Statistics (NCSES) and predecessor agencies - has produced regularly updated measures of research and development expenditures, employment and training in science and engineering, and other indicators of the state of U.S. science and technology. A more recent focus has been on measuring innovation in the corporate sector. NCSES collects its own data on science, technology, and innovation (STI) activities and also incorporates data from other
DATE:
TEAM MEMBERS:
Robert LitanAndrew WyckoffKaye Husbands Fealing
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a project that creates incubators composed of community members to foster innovative solutions to regional challenges.
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a project that creates citizen science projects in the Rio Grande de Manati watershed, taking participants through the participatory, collaborative, and co-creative phases of informal science education.
The Conservation Trust of Puerto Rico is creating citizen science projects in five research areas (insect monitoring; coastal/river system management; bird communities; bat assemblages; and cultural resources) that allow 140 Hispanic residents of Puerto Rico (age 14 and older) to move along a continuum of research involvement from contributor to collaborator to co-creator. As citizen scientists engage in scientific research that measures the effects of urban development on the Manati River watershed in northern Puerto Rico, the project team is evaluating the degree to which participants show changes in science knowledge, skills, attitudes, communication, and behavior. The proposed project is accelerating the development of citizen science activities in Puerto Rico. New scientific knowledge generated by citizen scientists will have practical importance within and beyond the Manati watershed because Puerto Rico is undergoing rapid urban development, resulting in the loss of biodiversity and emergence of environmental problems such as lower water quality. Environmental data collected by citizen scientists will form an environmental database that permits long-term watershed monitoring and informs land use decision making.
This paper is the first report on an extensive ethnographic study of two professional schools of art and design in the United States. The overall purpose of the study is to identify general principles for how to design learning environments that prepare learners to be creative. First, I document the cultural model of teaching and learning held by the faculty and students, and analyze the pedagogical practices used. This studio model is of interest because it emerged naturally in a community of educational practice. I argue that it is distinct from the two cultural models most familiar to
Design-based research (DBR) is a method for testing educational theories while simultaneously studying the process of creating and refining educational interventions. In this article, Sandoval proposes “conjecture mapping” as a technique to guide DBR processes. Conjecture mapping responds to critiques that DBR lacks clear standards and methodological rigor.
This poster was presented at the 2014 AISL PI Meeting held in Washington, DC. It presents the programs in production for Season Three of SciGirls, a series of six episodes following groups of girls and their mentors as they take part in citizen science projects. Season Three is produced in collaboration with the Cornell Lab of Ornithology and the National Girls Collaborative Project.
DATE:
TEAM MEMBERS:
TPT Twin Cities Public TelevisionRichard Hudson
This theoretical paper attempts to make the case for the use of narrative (i.e., fictional written text) in science education as a way of making science meaningful, relevant and accessible to the public. Grounded in literature pointing to the value of narrative in supporting learning and the need to explore new modes of communicating science, this paper explores the use of narrative in science education. More specifically, in this paper we explore the question: What is narrative and what are its necessary components that may be of value to science education? In answering this question we
Many science educators encourage student experiences of “authentic” science by means of student participation in science-related workplaces. Little research has been done, however, to investigate how “teaching” naturally occurs in such settings, where scientists or technicians normally do not have pedagogical training and generally do not have time (or value) receiving such training. This study examines how laboratory members without a pedagogical background or experience in teaching engage high school students during their internship activities. Drawing on conversation analysis, we analyze
DATE:
TEAM MEMBERS:
Pei-Ling HsuWolff-Michael RothAsit Mazumder
The purpose of this study was to investigate how two female students participated in science practices as they worked in a multimedia case-based environment: interpreting simulated results, reading and writing multiple texts, role-playing, and Internet conferencing. Using discourse analysis, the following data were analyzed: students' published web posters, Internet conferencing logs between American and Zimbabwean university students, and a focus group interview. Three constructs supported the development of these students' identities in practice: (a) multimedia cases creating emotional
Learning to see inequity in science is critical to anyone who is actively encouraging young people to invest their education, career, and life in the discipline. If the culture of science is grossly inequitable, why should students take the risk of entering this discipline over careers in other arenas? Many scholarly publications from the fields of psychology, science education, and sociology have described inequities in science; proposed theoretical frameworks for understanding them; and explored practical strategies for addressing such inequities, but progress in jettisoning these inequities
Elementary school children are capable of reproducing sophisticated science process skills such as observing, designing experiments, collecting data, and evaluating evidence. An understanding of the nature of scientific knowledge requires more than teaching and learning the performance of these skills. It also requires an appreciation of how these actions lead to knowledge generation and shape its durable and tentative nature. Our understanding of activities that support the teaching and learning of the nature of scientific knowledge is still growing. This study compares how scientific