This dissertation study investigates late-elementary and early-middle school field trips to a mathematics exhibition called Math Moves!. Developed by and currently installed at four science museums across the United States, Math Moves! is a suite of interactive technologies designed to engage visitors in open-ended explorations of ratio and proportion. Math Moves! exhibits emphasize embodied interaction and movement, through kinesthetic, multi-sensory, multi-party, and whole-body immersive experiences.
Many science museums and other informal-learning institutions offer exhibits and public
Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show
The 5-year longitudinal study on Iridescent's Family Science Learning model was conducted with 2,173 participants from 9 schools and museum sites in Los Angeles and New York City. Participants were underserved elementary school students and their parents. Families met once a week for 5 weeks in a row. Five families (~20 participants) came for all 5 years.
Each program implementation was coordinated by Iridescent team members. The goal of this study was to:
* To identify scalable methods of engaging underserved audiences in STEM.
* To identify sustainable methods of supporting long-term
In order to improve science, technology, mathematics, and engineering (STEM) learning, it is crucial to better understand the informal experiences that young children have that prepare them for formal science education. Young children are naturally curious about the world around them, and research in developmental psychology shows that families often support children in exploring and seeking explanations for scientific phenomena. It is less clear how to link children's natural curiosity and everyday parent-child interaction with more formal STEM learning. This collaborative project will team researchers from the University of California, Santa Cruz, the University of Texas, and Brown University with informal learning practitioners at the Children's Discovery Museum, The Thinkery, and the Providence Children's Museum in order to investigate how family interaction relates to children's causal learning, as well as how modifications to museum exhibit design and facilitation by museum staff influence families' styles of interaction and increase children's causal learning. This project is funded by the Research on Education and Learning (REAL) program which supports fundamental research by investigators from a range of disciplines in order to deepen what is known about STEM learning.
The project team will examine how ethnically and linguistically diverse samples of parents and children engage in collaborative scientific learning in three children's museums across the U.S. The research will combine observational studies of parent-child interaction in a real-world setting with experimental measures of children's causal learning. The investigators will examine how children explore and derive explanations for museum exhibits about mechanical gear function and fluid dynamics. In this way, the researchers will investigate the relation between styles of parent-child interaction and children's causal learning. The team will also investigate novel ways of presenting material within the exhibits to facilitate exploration and explanation. They will explore how signage, conversations with museum staff, parents' attitudes towards learning in museum settings, and parents' own prior knowledge about the exhibits can influence the parent-child interaction and subsequent causal learning. The project will advance the basic research goal of advancing what is known about what affects children's science content learning. It will also advance the practice-oriented goal of developing new strategies for the design of science museum exhibits and make recommendations for how parents can better talk to their children about scientific phenomena.
By engaging diverse publics in immersive and deliberative learning forums, this three-year project will use NOAA data and expertise to strengthen community resilience and decision-making around a variety of climate and weather-related hazards across the United States. Led by Arizona State University’s Consortium for Science, Policy & Outcomes and the Museum of Science Boston, the project will develop citizen forums hosted by regional science centers to create a new, replicable model for learning and engagement. These forums, to be hosted initially in Boston and Phoenix and then expanded to an additional six sites around the U.S., will facilitate public deliberation on real-world issues of concern to local communities, including rising sea levels, extreme precipitation, heat waves, and drought. The forums will identify and clarify citizen values and perspectives while creating stakeholder networks in support of local resilience measures. The forum materials developed in collaboration with NOAA will foster better understanding of environmental changes and best practices for improving community resiliency, and will create a suite of materials and case studies adaptable for use by science centers, teachers, and students. With regional science centers bringing together the public, scientific experts, and local officials, the project will create resilience-centered partnerships and a framework for learning and engagement that can be replicated nationwide.
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.
The LinCT (Linking Educators, Youth, and Learners in Computational Thinking) project at the Science Museum of Minnesota (SMM) will engage female teachers-in-training and youth from underrepresented demographics in immersive technology experiences and STEM education. LinCT will guide teachers to develop their understanding and use of technology in the classroom, as well as prepare youth for a future where technology plays a key role in a wide range of professional opportunities. The project aims to inspire teachers and youth to see the possibilities of technological competencies, as well as why the incorporation of technology can build meaningful learning experiences and opportunities for all learners. The LinCT program model offers learning and application experiences for participating teachers and youth and provides an introduction of technological tools used in SMM educational programs and professional development on approaches for engaging all learners in STEM. Both groups will provide instruction in SMM technology-based Summer Camps, reaching 1,000 young people every year. In each following school year, project educators will develop and deliver technology-based programs to nearly 1,000 under-served and underrepresented elementary students. The project will allow teachers and youth to deliver exciting and engaging technology-based programs to nearly 4,000 diverse young learners. As a result, all participants in this project will be better equipped to incorporate technology in their future careers.
The LinCT project will investigate effective approaches for broadening the participation of underrepresented populations by providing female pre-service teachers and female youth with opportunities to lead programming at the Science Museum of Minnesota (SMM). Over three years, the LinCT project will employ 8-12 female teachers-in-training [Teacher Tech Cadres (TTC)] and 12-24 female youth [Youth Teaching Tech Crews (Y-TTC)] from demographics that are underrepresented in STEM fields. The integration of these groups will result in relationships fostered within an educational program, where all participants are learners and teachers, mentors and mentees. The results of this unique program model will be assessed through the experiences of this focused professional learning and teaching community. The LinCT research study will focus on three aspects of the project. First, it will seek to understand how the teachers-in-training and youth experience the project model's varied learning environments. Next, the study will explore how the TTC's and the Y-TTC's motivation, confidence, and self-efficacy with integrating technology across educational settings change because of the program. Finally, the study will seek to understand the lasting aspects of culture, training, and community building on SMM's internal teams and LinCT partner institutions (University of St. Catherine's National Center for STEM Elementary Education and Metropolitan State University's School of Urban Education).
My Sky is a joint project between Boston Children’s Museum (BCM) and the Smithsonian Astrophysical Observatory (SAO). This three-year project was supported by NASA’s NRA/ROSES 2011 (NNX12AB91G) program, and resulted in the creation of My Sky, a 1,500 sq. ft. traveling astronomy exhibit designed for adults and children, ages 5 – 10. My Sky emphasizes authentic experiences that encourage the development of skills and content foundational to later appreciation and understanding of astronomical science. My Sky includes interactive explorations of objects and phenomena visible in the sky, encouraging families to “look up” not only when they visit the exhibit, but as a practice they might adopt in their everyday lives. This is all punctuated by real NASA data and assets, including a 5’ diameter model Moon created using the latest Lunar Reconnaissance Orbiter measurements; and high-resolution images from NASA’s Solar Dynamics Observatory satellite. This project also developed a series of public programs, museum staff training programs, and family workshops, all utilizing NASA resources and existing curriculum.
With support from the Institute of Museum and Library Services, The Wild Center (TWC) engaged Insight Evaluation Services (IES) to assess the impact of specific outreach activities of the Northern New York Maple Project between September 2013 and September 2015. Data for this two-year evaluation study were collected via in-depth telephone interviews conducted with a total of 25 participants, including 16 Tupper Tappers (Tupper Lake area residents who engaged in backyard tapping to provide sap for syrup production at the museum through the Community Maple Project), four local school teachers
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
Puppet interviews can be helpful for getting feedback from young children in informal learning environments like libraries, museums, or afterschool programs. While puppets are a standby for interviewing children in clinical settings and are being used more frequently in some areas of qualitative research, they tend to be under-utilized in informal learning environments - natural settings for puppets because of their connections with play (Epstein et al., 2008). Our team developed a puppet interview protocol for the Gradient research project (Gender Research on Adult-child Discussion in
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:
1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.
2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.
3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
The purpose of the Lenses on the Sky project is to create diverse skywatching-related experiences for youth across Oregon with a special focus on underserved Hispanic, African American, Native American, and rural communities. The Oregon Museum of Science and Industry (OMSI) will create and implement the project in collaboration with Portland’s Rose City Astronomers amateur astronomy club, Rosa Parks Elementary School in Portland, the Libraries of Eastern Oregon (LEO), and ScienceWorks Hands-On Museum in southern Oregon. The goals of the project are for participants to 1) understand the “big idea” that “humans have used observational tools and techniques across culture and time to understand space phenomena”, 2) recognize the relevance, value, and scientific achievements of NASA missions, and 3) be inspired to learn more about topics related to space science, STEM careers, and NASA. Audiences will explore these topics through three main “lenses” or frames: a NASA lens, a tools lens, and a cultural lens. The project will result in 1) a small, permanent, bilingual (Spanish/English) exhibition in OMSI’s free, public spaces adjacent to its planetarium, 2) three observational astronomy events held in Portland, Southern Oregon, and Eastern Oregon, 3) hands-on activities conducted at partner museums/libraries and shared with other educational institutions, 4) an Educator's Guide including lesson plans aligned with Next Generation Science Standards (NGSS), and 5) over 150 email communications to hundreds of recipients featuring space news updates.