This Small Business Innovation Research (SBIR) Phase I project will demonstrate the feasibility of engaging children ages 8 to 13 in the wonders of science and the application of scientific principles through the transmedia SCIENTASTIC! project. The study will also demonstrate that the television series will help students answer questions and solve problems for themselves and their community. The American public supports the advancement of scientific knowledge and our investment in scientific research leads the world. However, Americans are falling behind in educating the next generation of scientists. Late elementary school is an ideal time to capture students' attention and engage them in STEM activities. Using rigorous evaluation techniques we will show that SCIENTASTIC! encourages hands-on learning by exploration, questioning and thinking. The innovative television program and integrated companion resources provide scientific role models and demonstrate the scientific process in an entertaining way. The associated web site, Apps, Web 2.0 repository and teaching aids allow students, teachers, and parents to further explore concepts introduced in the show. Preliminary analysis reveals that the SCIENTASTIC! target audience liked the show, would watch the show and learned from the show. Further analysis will demonstrate that the transmedia approach increases viewer interest and learning. The broader impact/commercial potential of this project will play a transformative role in encouraging students to take STEM courses in college, pursue scientific careers, and become a scientifically informed electorate. By developing the story beyond the story, transmedia SCIENTASTIC! has strong commercial value. Dissemination through public television allows for a potential audience of 250 million people. Commercial and noncommercial sponsorships will be sold with associated on-air credits. Additional direct funding will be sought from industries with interests in promoting science and health literacy. A commercial version of the program will be offered to cable networks on a licensing basis, with DVDs, Apps and study guides sold to schools, homeschoolers, and parents. With a broad and commercially viable dissemination, SCIENTASTIC! will show children the joys of science by demonstrating and engaging in hands-on, team- based learning in real-world contexts. This process will improve student retention and will show that SCIENTASTIC! introduces new ways to learn. The SCIENTASTIC! project will evaluate teaching techniques information that will be shared with policy-makers, educational institutions, and teachers to improve education nationwide. By spreading successful methods for engaging children in math and science, SCIENTASTIC! shoiuld have significant societal benefit creating a generation of scientifically educated decision-makers.
Planet Earth Television (PET) created Scientistic!, a television series that focuses on a young girl's scientific investigations of the world around her. The pilot episode, Sticks and Stones, explored bones and how they heal. A website and iPad app were also developed to supplement the program. REA evaluated the impact of the television program, website, and app on youth's knowledge about and interest in science and specific topics related to bone health and healing. REA recruited youth (grades 1-7) to participate either at home with their families or in a classroom with their teachers. REA
Nationally, there is tremendous interest in enhancing participation in science, technology, engineering, and mathematics (STEM). Providing rich opportunities for engagement in science and engineering practices may be key to developing a much larger cadre of young people who grow up interested in and pursue future STEM education and career options. One particularly powerful way to engage children in such exploration and playful experimentation may be through learning experiences that call for tinkering with real objects and tools to make and remake things. Tinkering is an important target for research and educational practice for at least two reasons: (1) tinkering experiences are frequently social, involving children interacting with educators and family members who can support STEM-relevant tinkering in various ways and (2) tinkering is more open-ended than many other kinds of building experiences (e.g., puzzles, making a model airplane), because it is the participants' own unique questions and objectives that guide the activity. Thus, tinkering provides a highly accessible point of entry into early STEM learning for children and families who do not all share the same backgrounds, circumstances, interests, and expertise. This Research-in-Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The project will take place in the Tinkering Lab exhibit at Chicago Children's Museum. The research will investigate how reflective interactions between parents and children (ages 6-8) during tinkering activities ultimately impact child engagement in STEM. Design-based research (DBR) is well-suited to the iterative and contextually-rich process of tinkering. Using a DBR approach, researchers and museum facilitators will be trained to prompt variations of simple reflection strategies at different time points between family members as a way to strengthen children's engagement with, and memory of these shared tinkering events. Through progressive refinement, each cycle of testing will lead to new hypotheses that can be tested in the subsequent round of observations. The operationalization of study constructs and their measurement will come organically from families' activities in the Tinkering Lab and will be developed in consultation with members of the advisory board. Data collection strategies will include observation and interviews; a series of coding schemes will be used to make sense of the data. The research will result in theoretical and practical understanding of ways to enhance STEM engagement and learning by young children and their families through tinkering. A diverse group of at least 350 children and their families will be involved. The project will provide much needed empirical results on how to promote STEM engagement and learning in informal science education settings. It will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children. This research is being conducted through a partnership between researchers at Loyola University of Chicago and Northwestern University and museum staff and educators at the Chicago Children's Museum.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. In this project, Twin Cities Public Television (TPT) will produce Latina SciGirls, a fourth season of the Emmy Award-winning television and transmedia project SciGirls. Latina SciGirls includes six half-hour television episodes of SciGirls filmed in Spanish, showing groups of Hispanic girls and their Latina STEM (Science, Technology, Engineering, Mathematics) mentors investigating culturally relevant science and engineering problems of interest to Hispanic communities across the U.S. Television mentors and girls will be filmed in Hispanic communities in the southwest and southeastern U.S. and represent various cultural backgrounds and ethnicities. TPT will also create a series of family and girl-friendly online role model video profiles in Spanish and English of Latina STEM professionals. In addition to the media components, the project will provide opportunities to connect girls and their families with in-person Latina role models and STEM programming via community outreach in diverse Hispanic communities across the country. The goal of the project is to promote positive STEM identity development in middle school-age Hispanic girls. Hispanic women are the largest group of minority females, constituting 8% of the U.S. population, however, the participation of Hispanic women in science and engineering is significantly low: in 2010, just 2% of all of the scientists and engineers in the U.S. workforce were Hispanic women. The approach to Latina SciGirls is rooted both in research-based strategies proven to engage girls in STEM, and the need to address specific barriers that prevent many Hispanic girls from participating fully in STEM activities. These barriers include lack of STEM identity (girls' perception of themselves as scientists or engineers), limited exposure to STEM role models, and low parental engagement and English proficiency. Research shows that Hispanic girls have high interest and confidence in STEM, and a strong work ethic, but lack support and exposure to STEM professionals. TPT will uniquely leverage the power of national media and outreach to enable Latina STEM professionals to interact with girls and their families both onscreen and in person. Latina SciGirls episodes will be broadcast nationally by PBS and the nation's largest Hispanic network, Univisión, and streamed online at PBSKids.org. Resources will be made available to additional Spanish-speaking communities nationwide through the NSF-funded outreach program, SciGirls CONNECT, and through partnership with the National Girls Collaborative Project. TPT will commission an external research study with the University of Colorado-Boulder, which will test the hypothesis: The SciGirls model, when augmented to address specific barriers to STEM engagement of Hispanic girls ages 8 to 13 and their parents, will promote the development of positive STEM-related identities in Hispanic girls. In this capacity, the study will investigate Hispanic girls' personal experiences engaging with the project deliverables and how those experiences contribute to their STEM-related identity development against cultural and gender-based stereotypes. An external evaluation by Knight-Williams, Inc. will include front-end, formative and summative phases. The front-end evaluation will involve stakeholders in the development of a Spanish language program that features culturally appropriate storylines and showcases Latina STEM professionals. Formative evaluation will include focus groups of girls and families offering their reactions to the appeal and perceived value of the program. Summative evaluation will capture the reach of the broadcast, online components and community events. TPT will disseminate the research and evaluation findings through presentations at national conferences, including the American Education Research Association, National Science Teachers Association, and at www.InformalScience.org. The project's evaluation and research about the complexities of the cognitive and experiential factors that influence Hispanic girls' STEM identity development will contribute to the field's understanding of this subject and the larger efforts of broadening minority women's participation in STEM.
Capitalizing on the appeal of the PBS KIDS project PLUM LANDING, PLUM RX will research and develop resources to help families and educators infuse environmental science learning into outdoor prescription programs, while ensuring they are appropriate for broad use in other informal settings. The growing outdoor prescription movement is designed to increase the amount of time children spend outside in nature. Programs are structured so that health care providers write "prescriptions" for children to engage in outdoor activity, and informal educators "fill" these prescriptions by facilitating youth and family participation in outdoor activities. There is preliminary evidence that these programs are getting kids outside, but best practices for transitioning "get outside" programs to become "get outside and learn about the environment" programs remain unidentified. PLUM RX is designed to build this knowledge and create resources that are responsive to the needs of both English and Spanish-speaking urban families. The project will work with informal educators and families through multiple cycles of implementation and revision, testing and refining PLUM LANDING resources (animations, videos, games, hands-on science activities, and support materials for informal educators and families), with the goal of designing an effective and accessible PLUM RX Toolkit for national dissemination. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. The proposed research is designed to ensure that the PLUM RX Toolkit--the resources and support materials--will meet the needs of educators working in non-specialized urban settings. Education Development Center (EDC) and WGBH developers will collaborate on design-based research at three urban outdoor prescription programs serving low-income families: Philadelphia Nature Rx in Philadelphia, PA; Outdoors Rx in Boston, MA; and Portland Rx Play in Portland, OR. Moving through cycles of implementation, observation, analysis, and revision, the research team will work closely with educators, families, and developers to determine how the programmatic and structural features of the learning environment, the actions of the educators, and the intervention itself can most effectively support children and families' outdoor exploration in urban contexts. Toolkit materials will include resources for kids and families (including Spanish-speaking families) and informal educators (including those who work with families and directly with children in out-of-school settings). Directors from the three urban outdoor prescription programs will contribute to every phase of the research process, including recruiting families and youth who will participate in a weekly sequence of activities. The overarching focus of the analysis process will be on systematically describing the interaction between two dimensions of implementation: What happened during pilot implementations, and the factors that constrained or supported implementation as planned; and the quality of what happened, which will be defined with reference to the intended impacts. EDC will use a structured descriptive coding process to analyze the qualitative evidence gathered through interviews and observations during design and testing periods. Products of the research activities will include: a series of formative memos to the development team; a report mapping changes made to PLUM RX Toolkit materials in response to formative input and the intended impact of those changes; and findings regarding commonalities and differences across sites in the interaction of local contextual factors and the implementation success of the PLUM RX Toolkit. Concord Evaluation Group (CEG) will provide independent, summative evaluation of the project. Through this process, PLUM RX will build broader knowledge about how to design educational resources, geared for both families and informal educators, which respond to the unique challenges of exploring environmental science in urban environments.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This research project leverages ongoing longitudinal research to investigate whether, and if so how, youth from ages 10 to 15 in a diverse, under-resourced urban community become interested and engaged in STEM. The project addresses a global issue; fewer youth choose to major in scientific fields or take science coursework at high school or university levels. These declining numbers result in fewer STEM professionals and fewer scientifically literate citizens who are able to function successfully in an increasingly scientific and technological society. These declines are observed for youth as a whole, but are most pronounced for girls and particular non-white ethnic minorities. Data collected from youth in this community of study, including non-white ethnic minorities, mirrors this decline. NSF funding will support a five-year systematic and systemic process in which project researchers work collaboratively with existing informal and formal educational partners (e.g., museums, libraries, afterschool providers, schools) to develop sets of customized, connected, and coordinated learning interventions, in and out of school, for youth with different backgrounds, needs, and interests, all with the goal of averting or dampening this decline of STEM interest and participation during early adolescence. In addition to new research and community STEM networks, this project will result in a Community Toolkit that includes research instruments and documentation of network-building strategies for use by other researchers and practitioners nationally and internationally. This mixed methods exploratory study has two distinct but interrelated populations - youth and educators from across informal and formal institutions. To develop a clearer understanding of the factors that influence youths' STEM interest development over time, particularly among three youth STEM Interest Profiles identified in a secondary analysis (1-Dislike Math, 2-Like all STEM, 3-Dislike all STEM), the design combines surveys with in-depth interviews and observations. To study educators and institutions, researchers will combine interviews, focus groups, and observations to better understand factors that influence community-wide, data-driven approaches to supporting youth interest development. Research will be conducted in three phases with the goal of community-level change in youth STEM interest and participation. In Phase 1 (Years 1 & 2) four educational partners will develop interventions for a 6th and 7th grade youth cohort that will be iteratively refined through a design-based approach. Educational partners and researchers will meet to review and discuss interest and participation data and use these data to select content, as well as plan activities and strategies within their programs (using a simplified form of conjecture mapping). By Phase 2 (Years 3 & 4) four additional partners will be included, more closely modeling the complex system of the community. With support from researchers support and existing partners, new educational partners will similarly review and discuss data, using these to select content, as well as plan activities consistent with program goals and strategies. Additional interventions will be implemented by the new partners and further assessed and refined with a new 6th and 7th grade cohort, along with the existing interventions of the first four partners. In Phase 3 (Year 5) data will be collected on pre-post community-level changes in STEM interest and participation and the perceived effectiveness of this approach for youth. These data will inform future studies.
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project is building and studying a new type of online learning community. The WeatherBlur community allows kids, teachers, scientists, fishermen/fisherwomen, and community members to learn and do science together related to the local impacts of weather and climate on their coastal communities. Members of the community propose investigations, collect and share data, and learn together. WeatherBlur is designed to be a new form of knowledge-building community, the Non-Hierarchical Online Learning Community. Unlike other citizen science efforts, there is an emphasis on having all members of the community able to propose and carry out investigations (and not just help collect data for investigations designed by expert scientists or teachers). Prior research has demonstrated important structural differences in WeatherBlur from other citizen science learning communities. The project will use social network analysis and discourse analysis to measure learning processes, and Personal Meaning Mapping and embedded assessments of science epistemology and graph interpretation skills to examine outcomes. The measures will be used to explore knowledge-building processes and the scaffolds required to support them, the negotiation of explanations and investigations across roles, and the epistemic features that drive this negotiation process. The work will be conducted using an iterative design-based research process in which the prior functioning WeatherBlur site will be enhanced with new automated prompt and notification systems that support the non-hierarchical nature of the community, as well as tools to embed assessment prompts that will gauge participants' data interpretation skills and epistemic beliefs. Exponential random graph modeling will be used to analyze the social network analysis data and test hypotheses about the relationship between social structures and outcomes.
The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy. This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.
DATE:
-
TEAM MEMBERS:
Sara LacyRoger TobinNathaniel BrownStamatis VokosRachel ScherrKara GrayLane SeeleyAmy Robertson
Drawing upon critically oriented studies of science literacy and environmental justice, we posit a framework for activism in science education. To make our case, we share a set of narratives on how the River City Youth Club acquired a new green roof. Using these narratives we argue that the ways in which youth describe their accomplishments with respect to the roof reflects a range of subject positions that they carve out and take up over time. These subject positions reveal how activism is a generative process linked to “knowing” and “being” in ways that juxtapose everyday practices with
This article investigates the development of agency in science among low-income urban youth aged 10 to 14 as they participated in a voluntary year-round program on green energy technologies conducted at a local community club in a midwestern city. Focusing on how youth engaged a summer unit on understanding and modeling the relationship between energy use and the health of the urban environment, we use ethnographic data to discuss how the youth asserted themselves as community science experts in ways that took up and broke down the contradictory roles of being a producer and a critic of
Field trips to science museums can provide students with educational experiences, particularly when museum programs emphasize scientific inquiry skill building over content knowledge acquisition. We describe the creation and study of 2 programs designed to significantly enhance students' inquiry skills at any interactive science museum exhibit without the need for advanced preparation by teachers or chaperones. The programs, called Inquiry Games, utilized educational principles from the learning sciences and from visitor studies of museum field trips. A randomized experimental design compared