“Reclaiming Digital Futures” is a free guide and associated website for youth organizations to use as they integrate digital learning into their programming and practices. The report is available at DigitalLearningPractices.org.
The report and the associated DigitalLearningPractices.org site contain a cross-section of resources to aid organizations and educators in developing quality programming that integrate technology and youth development. Rather than focusing on efforts to help youth become fluent and skilled in uses of technology simply for the sake of meeting predetermined standards
Since 1992, the WSU Math Corps, a combined mathematics and mentoring program, has worked to make a difference in the lives of Detroit’s children—providing them with the love and support that all kids need in the moment, while empowering them with the kinds of educational opportunities and sense of purpose, that hold the promise of good lives for themselves and a better world for all.
DATE:
TEAM MEMBERS:
Steve KahnStephen ChrisomalisTodd KubicaCarol Philips-BeyFrancisca Richter
This poster shows an overview of the The Designing Our Tomorrow (DOT) project. The project aims to develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. DOT seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices.
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.
Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
Fostering interest in science is critical for broadening engagement with science topics, careers, and hobbies. Research suggests that these interests begin to form as early as preschool and have long-term implications for participation and learning. However, scholars have only speculated on the processes that shape interest development at this age, when children’s exposure to science primarily occurs during family-based learning experiences. Moving beyond speculation, we conducted a qualitative study with seven low-income mothers and their four-year-old daughters from Head Start to (a) develop
This poster was presented as part of the 2019 AISL PI Meeting. In this project, the New York Hall of Science, in collaboration with the Amazeum (Bentonville, AR), the Tech (San Jose, CA), and the Creativity Labs (Indiana University), is conducting a design-based research study to develop evidence-based guidance about how museums can use narratives to create more equitable and effective engineering experiences for girls. Through iterative activity development, the project team is exploring ways of using narrative elements (such as characters, settings, and problem frames) to communicate a story
This poster was presented at the 2019 AISL PI Meeting in Washington, DC. It provides an overview of a project designed to broaden participation of blind students in engineering fields through the development of spatial ability skills and the showcasing of nonvisually accessible teaching methods and techniques.
Many informal learning institutions are experimenting with STEAM approaches to engage diverse learners. However, what STEAM means, including how to design and enact STEAM experiences, is undertheorized. We are offering a PD series for informal educators that centers around a set of core STEAM practices that support identity work among learners. The series involves in-person sessions, online training, and team coaching during the design phase.
This poster was presented at the 2019 NSF AISL Principal Investigators Meeting.
The COMPASS conference will bring together 80 participants for two days in September 2018 at the Exploratorium in San Francisco, CA. The first dissemination will take place in a presentation at the ASTC conference the following month in October 2018. A webinar sharing insights from COMPASS and inviting others to engage will be held in March 2019 hosted by ASTC and accessible by ASTC members and non-members alike. A companion COMPASS e-publication will be released for free download, also in March 2019, with summaries of conference proceedings, key issues identified, case histories of ILAM in
This poster, which was presented in Alexandria, VA at the CAISE AISL PI meeting in February 2019, summarizes the Under the Arctic: Digging into Permafrost traveling exhibition developed for the Hidden World of Permafrost project.
This poster, which was presented in Alexandria, VA at the CAISE AISL PI meeting in February 2019, summarizes the Winter Worlds/Snow: Musuem Exhibit, Educational Outreach, and Learning Research collaborative project that engages audiences in snow as a platform to explore Earth’s climate system and explores how culture affects STEM learning in informal settings.