Conversations shortly after hands-on learning experiences can consolidate children’s fleeting patterns of engagement with objects into long-lasting memories. Moreover, conversational reflection can add layers of understanding of events beyond what is available from direct experience with objects alone.
For the past several years, my colleagues and I have partnered with practitioners at Chicago Children’s Museum on projects to build knowledge and a research base for educational practices in museums. One focus of our work together concerns family engagement in conversational reflections about
The goals of the project were to build an understanding about the perception of career and technical education (CTE) as an option for middle school students in pursuing skill-based STEM-related careers, and to use that information to develop an innovative suite of digital tools designed to improve mentors’ and school counselors’ communication with middle school–aged students.
“Monkeying Around: Digital Media and Parent/Child Engagement Resources to Increase Preschool Computational Thinking” is a new project that uses animation, live-action videos, and hands-on activities to support joint engagement of children and caregivers around computational thinking concepts and practices. WGBH, a leading producer of educational STEM media, developed prototypes of videos and hands-on activities around the project’s computational thinking learning goals for young children. Education Development Center (EDC), WGBH’s research partner for the project, conducted a small formative
Twenty-first century skills are vital for preparing youth for careers in science, technology, engineering, and math (STEM) fields. STEM out-of-school time (OST) programs play an important role in helping youth develop these skills, particularly the teamwork skills necessary for the growing collaborative nature of STEM jobs. However, there is a lack of appropriate measures to evaluate this key programmatic outcome in STEM OST settings. This dissertation research addresses the lack of measures through the development of an instrument to assess team communication skills in middle and high school
In the last twenty years, citizen science has blossomed as a way to engage a broad range of individuals in doing science. Citizen science projects focus on, but are not limited to, nonscientists participating in the processes of scientific research, with the intended goal of advancing and using scientific knowledge. A rich range of projects extend this focus in myriad directions, and the boundaries of citizen science as a field are not clearly delineated. Citizen science involves a growing community of professional practitioners, participants, and stakeholders, and a thriving collection of
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Informal STEM educational activities have proliferated widely in the US over the last 20 years. Additional research will further validate the long-term benefits of this mode of learning. Thus, elaborating the multitude of variables in informal learning and how those variables can be used for individual learning is yet to be defined for the circumstances of the learners. Thus, the primary objective of this work is to produce robust and detailed evidence to help shape both practice and policy for informal STEM learning in a broad array of common circumstances such as rural, urban, varying economic situations, and unique characteristics and cultures of citizen groups. Rather than pursuing a universal model of informal learning, the principal investigator will develop a series of comprehensive models that will support learning in informal environments for various demographic groups. The research will undertake a longitudinal mixed-methods approach of Out of School Time/informal STEM experiences over a five-year time span of data collection for youth ages 9-19 in urban, suburban, town, and rural communities. The evidence base will include data on youth experiences of informal STEM, factors that exert an influence on participation in informal STEM, the impact of participation on choices about educational pathways and careers, and preferences for particular types of learning activities. The quantitative data will include youth surveys, program details (e.g. duration of program, length of each program session, youth/facilitator ratio, etc.), and demographics. The qualitative data will include on-site informal interviews with youth and facilitators, and program documentation. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This third and final report reflects on the entire three-year grant period. It offers the External Review Team’s overall assessment and observations about the accomplishments and challenges experienced by the Child Trends Team while implementing the proof-of-concept study. It further presents several open questions and opportunities for future consideration.
Ruff Family Science is an exploratory project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. More specifically, the project is undertaking a research and design process to create prototype
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The theme of this conference project by the New York Hall of Science will be exploring how to better design exhibits to promote "public engagement with science." Here, "public engagement with science" refers to opportunities that go beyond traditional approaches to the public understanding of science. The event will invite professionals to consider how to shift exhibit designs toward engaging visitors with STEM in ways that emphasize the intersection of STEM innovation with visitors' daily lives, their personal agency, and their interdependence with their personal social networks and the institutions that advance STEM knowledge and innovation. The conference and its pre- and post-conference activities will bring together curators, exhibition developers, community outreach professionals, museum administrators, and learning scientists from the United States and Canada. They will work together to identify design principles and key obstacles to designing exhibits that can better help science museums achieve two goals: 1) making visitors' diverse and personal questions, concerns, and perspectives central to their experience of the exhibits; and 2) engaging visitors as contributors to the exhibit experience in ways that make their contributions visible and consequential. During this two-day event attendees will consider how exhibits can support broader and more diverse public participation in critical debates about the roles of STEM discovery and innovation in society. The effort is grounded in recent work on public engagement with science; on reorganizing museums to become sites for participation and contribution by visitors, and particularly by institutions' local communities; and on making and engineering design programming within museums. The goal is to chart a course toward a vision of the future of science museums in which they maintain their status as sources of trusted information, while also fulfilling their potential as sites of genuine participation and social interaction, in which visitors make meaningful contributions to the substance and workings of the museum floor while also engaging with, learning about and holding themselves accountable to the core concepts and practices of the STEM disciplines. The conference will build the capacity and collaborative engagement of a network of science centers whose work is central to achieving the museum field's ultimate goal of engaging the public of all ages in learning STEM in informal environments. The conference and associated activities will be evaluated by staff at the New York Hall of Science, with oversight by an external advisory committee of research and development professionals. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This project examines the conditions in which families and young learners most benefit from "doing science and math" together among a population that is typically underserved with respect to STEM experiences--families experiencing poverty. This project builds on an existing program called Teaching Together that uses interactive parent-child workshops led by a museum educator and focused on supporting STEM learning at home. The goal of these workshops is to increase parents'/caregivers' self-perception and ability to serve as their child's first teacher by supporting learning and inquiry conversations during daily routines and informal STEM activities. Families attend a series of afternoon and evening workshops at their child's preschool center and at a local children's museum. Parents/Caregivers may participate in online home learning activities and museum experiences. The project uses an experimental design to test the added value of providing incremental supports for informal STEM learning. The study uses an experimental design to address potential barriers parents/caregivers may perceive to doing informal STEM activities with their child. The project also explores how the quantity and quality parent-child informal learning interactions may relate to changes in children's science and mathematics knowledge during the pre-kindergarten year. The project partners include the Children's Learning Institute at the University of Texas Health Science Center at Houston and the Children's Museum of Houston.
The project is designed to increase understanding of how parents/caregivers can be encouraged to support informal STEM learning by experimentally manipulating key aspects of the broader expectancy-value-cost motivation theory, which is well established in psychology and education literatures but has not been applied to preschool parent-child informal STEM learning. More specifically, the intervention conditions are designed to identify how specific parent supports can mitigate potential barriers that families experiencing poverty face. These intervention conditions include: modeling of informal STEM learning during workshops to address skills and knowledge barriers; materials to address difficulties accessing science and math resources; and incentives as a way to address parental time pressures and/or costs and thereby improve involvement in informal learning activities. Intervention effects will be calculated in terms of effect sizes and potential mediators of change will be explored with structural equation modeling. The first phase of the project uses an iterative process to refine the curriculum and expand the collection of resources designed for families of 3- to 5-year-olds. The second phase uses an experimental study of the STEM program to examine conditions that maximize participation and effectiveness of family learning programs. In all, 360 families will be randomly assigned to four conditions: 1) business-as-usual control; 2) the Teaching Together core workshop-based program; 3) Teaching Together workshops + provision of inquiry-based STEM activity kits for the home; and 4) Teaching Together workshop + activity kits + provision of monetary incentives for parents/caregivers when they document informal STEM learning experiences with their child. The interventions will occur in English and Spanish. A cost analysis across the interventions will also be conducted. This study uses quantitative and qualitative approaches. Data sources include parent surveys and interviews, conversation analysis of home learning activities, parent photo documentation of informal learning activities, and standardized assessments of children's growth in mathematics, science, and vocabulary knowledge.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Over the last decade there has been significant growth in the number of afterschool programs that offer science activities to youth. Measuring the quality and contributions of these programs to youth learning is important to both the afterschool organizations and the communities that support them, including participating youth and their families. To address the range and evolving interests and capacities of all young people within a community, there are, by necessity, a wide range of types of afterschool science programming. Such programming may vary by focus (e.g., botany, astronomy, computer science, engineering, or zoology), structure (e.g., hands-on, place-based, on-line, or in partnership with local industry) and other factors. Across the range of programming, there are different intended learning goals and opportunities for students. For these reasons, a range of measurement tools are needed to monitor the quality and outcomes of wide range of afterschool science programs. To explore the current state of evaluation and measurement tools for use in afterschool science programs, the University of Washington, in partnership with the Afterschool Alliance and the National Girls Collaborative, will design and host a conference for afterschool STEM leaders, researchers, and evaluators. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This conference is grounded in the programmatic priorities and strategies of afterschool organizations. The goals of the conference are to (a) articulate and map the range of intended outcomes of afterschool STEM programs; (b) identify how existing measurement and evaluation tools map on to intended outcomes; and (c) identify overlaps, complementarities, and gaps in the available tools in order to provide guidance to (i) practitioners on how and why to select current evaluation tools and (ii) researchers on directions for future tool development. Tangible convening products include:
*A detailed, visual representation ("intended outcomes map") of the range of outcomes afterschool programs are seeking to achieve, related to student learning, educator capacity, program quality, family impacts, learning ecosystems connectivity;
*A taxonomy of current evaluation instruments aligned to these outcomes, with an explanation of how they overlap or differentiate both methodologically and theoretically;
*The identification of the areas where further work is needed, including further specification of learning outcomes and future development of evaluation tools.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This poster, which was presented at the Visitor Studies Association Conference in 2017, shares methods, working definitions and frameworks, and lessons-learned from Developing Guidelines for Designing Challenging and Rewarding Interactive Science Exhibits (DRL-1612577). Through design-based research, this project is investigating the emotional state of “productive struggle,” an intensive, fruitful state of exhilaration and challenge characterized by high levels of physiological arousal along with the experience of negative emotions. The project pushes beyond the positive range of emotional