In offering museum active, multi-sensorial experiences, digitally responsive exhibits are an important part of museums' strategy for attracting visitors. Such exhibits are popular, but museums lack understanding of visitors' immediate emotional and physical experience of them. Museums' approach to exhibition evaluation favours the methods of interview and questionnaire, which are not well suited to gathering feedback on the complex mix of audio, kinesthetic and visual experience encountered in digital environments. In addressing a lack of knowledge in the museum studies literature concerning
This research extends the investigator's prior NSF supported work to develop theoretical and empirical understanding of the double bind faced by women of color in STEM fields. That is, their race and gender present dual dilemmas as they move through STEM educational and career paths. The proposed study will identify gaps in our understanding, and identify some of the methodological problems associated with answering outstanding questions about the double bind. The major research question is: What strategies work to enable women of color to achieve higher levels of advancement in STEM academia and professions? The goal is to bring a clearer understanding of the issues which confront women of color as they pursue study of science and engineering, and what factors influence whether they leave or remain in STEM.
The work will employ a highly structured narrative analysis process to identify and quantify factors that have been successful in broadening the participation of minority women in STEM. The research design involves two separate tracks of work: 1) to conduct narrative analysis of primary documents associated with women of color in science; and 2) to conduct site visits and interviews to understand features of programs associated with successful support of women of color in undergraduate and graduate education. The first part is designed to inform the second, with the narrative analysis helping to identify features to look for in site visits and to use in development of interview protocols.
This research will focus on individual and programmatic factors that sustain women of color as they confront barriers to their career goals. It examines institutional strategies and support structures that help women of color ultimately to succeed, and social and pedagogic elements that influence their educational experiences. Although women of color have made some progress over the last three decades towards more equitable participation in STEM fields, the major efforts made to address this issue have not produced the desired outcomes; minority women continue to be underrepresented relative to white women and non-minority men. The factors that account for continued lower participation rates are not yet fully understood.
Beyond the Double Bind is designed to transform the intellectual basis for building future programs that will better enable women of color to be successful in STEM. While focused on women of color, the results will ultimately inform strategies and programs to expand the presence of all women and minorities in STEM.
This book is a deliverable (requisite) of an NSF (National Science Foundation) grant to share the project outcomes and what we learned from the NSF grant project. This four-year NSF project was funded to provide professional development to museum educators about Indigenous Knowledge and Western Science in museums, with the goal of providing a culturally relevant way for Indigenous communities to connect to science. The name of this grant was “Cosmic Serpent: Bridging Native Ways of Knowing and Western Science in Museum Settings.”
This book is also a snapshot in time of this work in
The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education in eight states that for over forty years introduce science, mathematics and engineering to K-12 students traditionally underrepresented in the discipline. This exploratory study examines the influences that those MESA activities have on students' perception of engineering and their self-efficacy and interest in engineering and their subsequent decisions to pursue careers in engineering. The MESA activities to be studied include field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement.
About 1200 students selected from 40 MESA sites in California, Maryland and Utah are surveyed with instruments that build on those used in prior studies. Focus groups with a randomly selected subset of the students provide follow-up and probe the influence of the most promising activities. In the first year of the project the instruments, based on existing instruments, are developed and piloted. Data are taken in the second year and analyzed in the third year. A separate evaluation determines that the protocols are reasonable and are being followed.
The results are applicable to a number of organizations with similar aims and provide information for increasing the number of engineers from underrepresented populations. The project also investigates the correlation between student engagement in MESA and academic performance. This project provides insights on activities used in informal settings that can be employed in the classroom practice and instructional materials to further engage students, especially student from underrepresented groups, in the study of STEM.
DATE:
-
TEAM MEMBERS:
Christine HaileyCameron DensonChandra Austin
In this article, we theorize the relation between race and schooling and consider the implications for learning. While the body of research on culture and learning has come to define learning as an inherently cultural and social process, scholars have few theoretical tools to help us think about the role of race and racism in relation to students' access to identities as learners and to learning. We draw on both theoretical and empirical literature to make three core arguments: (a) racial 'storylines' or narratives are prevalent in our society and have powerful implications for learners
DATE:
TEAM MEMBERS:
Na'ilah Suad NasirCyndy R. SnyderNiral Shah
This year we are pleased to be publishing the second volume of the annual proceedings for the Games+Learning+Society (GLS) Conference. For eight years now, GLS has been a valued event for individuals working in academia, industry, and as practitioners in schools to come together around their shared interest and passion for videogames and learning. This conference is one of the few destinations where the people who create high-quality digital learning media can gather to discuss and shape what is happening in the field and how the field can serve the public interest. GLS offers an opportunity
DATE:
TEAM MEMBERS:
Crystle MartinAmanda OchsnerKurt Squire
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
Science communication processes are complex and uncertain. Designing and managing these processes using a step-by-step approach, allows those with science communication responsibility to manoeuvre between moral or normative issues, practical experiences, empirical data and theoretical foundations. The tool described in this study is an evidence-based questionnaire, tested in practice for feasibility. The key element of this decision aid is a challenge to the science communication practitioners to reflect on their attitudes, knowledge, reasoning and decision-making in a step-by-step manner to
DATE:
TEAM MEMBERS:
Maarten C.A. van der SandenFrans J. Meijman
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?
The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.
The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
While the opportunity to engage in scientific reasoning has been identified as an important aspect of informal science learning (National Research Council, 2009), most studies have examined this strand of science learning within the context of physics‒based science exhibits. Few have examined the presence of such activity in conjunction with live animal exhibits at zoos and aquariums. A video study of 41 families at four touch‒tank exhibits, where visitors can observe and interact with live marine species, revealed that families engaged in making claims, challenging claims, and confirming