The Massachusetts Audubon Society will develop, pilot, and implement an evaluation framework for nature-based STEM programming that serves K-12 students visiting its network of nature centers and museums. Working with an external consultant, the society will develop the framework comprised of a logic model and theory of change for fieldtrips, and develop a toolkit of evaluation data collection methodology suitable to various child development stages. The project team will design and conduct three professional development training seminars to help Massachusetts Audubon school educators develop a working understanding of the new evaluation framework for school programs and gain the skills necessary to support protocol implementation. This project will result in the development and adoption of a universal protocol to guide the collection, management, and reporting of education program evaluation data across the 19 nature centers and museums in the Massachusetts Audubon system.
The Habitot Children's Museum will renovate its Rocketship and Mission Control exhibition to increase functionality, making it more accessible and interactive for parents, caregivers, and children. With input from the community and a professional advisory group of museum professionals, early learning specialists, space scientists and parents, the museum will refurbish, update, and improve exhibition access for children with special needs by completing previously identified universal design requirements; adding interactive components that support young children's need for open-ended, play-based experiences to build strong STEM learning foundations; and addressing adult visitors' needs to have defined roles in exhibition spaces to better engage with their children. A customized, observation-based evaluation tool will be used to measure the identified project outcomes.
The STEAM Para Todos project will transform a prominent exhibit in the Marbles Kids Museum into a vibrant space that fosters culturally relevant STEAM learning and exploration for all museum visitors, particularly the growing Hispanic, dual-language learner population in Wake County, N.C. The three-year project will involve research, testing, design, installation, and evaluation. The museum will work with the school system, STEM partners, the local arts community, and organizations engaged with the Hispanic community to develop the exhibit. Guiding the project will be a community of practice, comprised of museum professionals; researchers with expertise in STEAM education, dual language learners, and culturally responsive informal learning; partners from STEM businesses; creative arts organizations; the Wake County Public School System; and stakeholders from the exhibit's intended audience. Project partners include Wake County Public School System, Que Pasa, US2020, Visual Arts Exchange, North Carolina Society of Hispanic Professionals, and Google Fiber.
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE:
-
TEAM MEMBERS:
Joan FreeseMomoko HayakawaBryce Becker
In spring 2019, WestEd conducted a pilot study using five playlists to understand the feasibility of implementing the playlists in afterschool programs and to discuss the potential impact of the playlists on student science learning. The research questions were: 1) How are the playlists implemented in after-school programs? 2) What is the potential impact of playlists on student science knowledge and skills? Student science knowledge was measured using the ScienceQuest test, and attitudes towards science were measured by the Emerging STEM Learning Activation Survey. Data were analyzed using a
In this paper, we examine the relationship between participants’ childhood science, technology, engineering, and mathematics (STEM) related experiences, their STEM identity (i.e., seeing oneself as a STEM person), and their college career intentions. Whereas some evidence supports the importance of childhood (i.e., K‐4) informal STEM education experiences, like participating in science camps, existing research does not adequately address their relationship to STEM career intention later in life. Grounding our work in identity research, we tested the predictive power of STEM identity on career
This critical discourse analysis examined climate change denial books intended for children and parents as examples of pseudo-educational materials reproduced within the conservative echo chamber in the United States. Guided by previous excavations in climate change denial discourses, we identified different types of skepticism, policy frames, contested scientific knowledge, and uncertainty appeals. Findings identify the ways these children's books introduced a logic of non-problematicity about environmental problems bolstered by contradictory forms of climate change skepticism and polarizing
Knowing how specific publics understand and experience science is crucial for both researchers and practitioners. As learning and meaning-making develop over time, depending on a combination of factors, creative possibilities to analyze those processes are needed to improve evaluation of science communication practices. We examine how first grade children's drawings expressed their perceptions of the Sun and explore their views of a major astronomical body within their social, cultural and personal worlds. We then examine how the observation of the Sun through a telescope led to changes in
DATE:
TEAM MEMBERS:
Sara AnjosAlexandre AibéoAnabela Carvalho
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:
EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.
This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.
In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Brains On! exploratory research study was guided by three overarching research questions:
Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts?
How are Brains On! listeners using the podcast and engaging with its content?
What kinds of impacts does Brains On! have on its audiences?
These questions were answered through a three-phase mixed-methods research design. Each phase informed the next, providing additional insights into answering the research questions. Phase 1 was a review of a sample of secondary data in the
Integrating science, technology, engineering, and mathematics (STEM) subjects in pre-college settings is seen as critical in providing opportunities for children to develop knowledge, skills, and interests in these subjects and the associated critical thinking skills. More recently computational thinking (CT) has been called out as an equally important topic to emphasize among pre-college students. The authors of this paper began an integrated STEM+CT project three years ago to explore integrating these subjects through a science center exhibit and a curriculum for 5-8 year old students. We
DATE:
TEAM MEMBERS:
Morgan HynesMonica CardellaTamara MooreSean BrophySenay PurzerKristina TankMuhsin MeneskeIbrahim YeterHoda Ehsan
Computational Thinking (CT) is an often overlooked, but important, aspect of engineering thinking. This connection can be seen in Wing’s definition of CT, which includes a combination of mathematical and engineering thinking required to solve problems. While previous studies have shown that children are capable of engaging in multiple CT competencies, research has yet to explore the role that parents play in promoting these competencies in their children. In this study, we are taking a unique approach by investigating the role that a homeschool mother played in her child’s engagement in CT