The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS:
Ibrahim YeterAnastasia Marie RynearsonHoda EhsanAnnwesa DasguptaBarbara FagundesMuhsin MeneskeMonica Cardella
Computational Thinking (CT) is an often overlooked, but important, aspect of engineering thinking. This connection can be seen in Wing’s definition of CT, which includes a combination of mathematical and engineering thinking required to solve problems. While previous studies have shown that children are capable of engaging in multiple CT competencies, research has yet to explore the role that parents play in promoting these competencies in their children. In this study, we are taking a unique approach by investigating the role that a homeschool mother played in her child’s engagement in CT
For the past two decades, researchers and educators have been interested in integrating engineering into K-12 learning experiences. More recently, computational thinking (CT) has gained increased attention in K-12 engineering education. Computational thinking is broader than programming and coding. Some describe computational thinking as crucial to engineering problem solving and critical to engineering habits of mind like systems thinking. However, few studies have explored how computational thinking is exhibited by children, and CT competencies for children have not been consistently defined
Informal learning environments such as science centers and museums are instrumental in the promotion of science, technology, engineering, and mathematics (STEM) education. These settings provide children with the chance to engage in self-directed activities that can create a of lifelong interest and persistence in STEM. On the other hand, the presence of parents in these settings allows children the opportunity to work together and engage in conversations that can boost understanding and enhance learning of STEM topics. To date, a considerable amount of research has focused on adult-child
The Miami Children’s Museum (MCM) contracted RK&A to conduct a summative evaluation of the Construction Zone exhibition, which was funded in part by IMLS. The evaluation focused on understanding the overall experience for walk-in visitors to the exhibition. It also explored visitor experiences with three specific exhibits with attention to problem-solving, experimentation with building materials, and collaboration.
How did we approach this study?
RK&A used two methodologies to evaluate the exhibition: interviews and focused observations. RK&A conducted 51 open-ended interviews with a
The Oregon Museum of Science and Industry (OMSI), in collaboration with neuroscientists at the Oregon Health & Science University (OHSU), museum professionals, and community partners, proposes to create a 1,000 to 1,500-square-foot traveling exhibition, accompanying website, and complementary programming to promote public understanding of neuroscience research and its relevance to healthy brain development in early childhood. The exhibition and programs will focus on current research on the developing brain, up to age 5, and will reach a national audience of adult caregivers of young children and their families, with a special emphasis on Latino families. The project will be developed bi-culturally and bilingually (English/Spanish) in order to better engage underrepresented Latino audiences. The exhibition and programs will be designed and tested with family audiences.
The exhibition project, Interactive Family Learning in Support of Early Brain Development, has four goals that primarily target adult caregivers of children up to age 5:
Foster engagement with and interest in neurodevelopment during early childhood
Enhance awareness of how neuroscience research leads to knowledge about healthy development in early childhood
Inform and empower adult caregivers to enrich their children’s early learning experiences
Reach diverse family audiences, especially Latino caregivers and their families
A collaborative, multidisciplinary team of neuroscience researchers, experts in early childhood education, museum educators, and OMSI personnel with expertise in informal science education and bilingual exhibit development will work together to ensure that current science is accurately interpreted and effectively presented to reach the target audiences. The project will foster better public understanding of early brain development and awareness and confidence in caregivers in using play to enrich their children’s experiences and support healthy brain development. Visitors will explore neuroscience and early childhood development through a variety of forms—multi-sensory, hands-on interactive exhibits, graphic panels, real objects, facilitated experiences, and an accompanying website.
Following the five-year development process, the exhibition will begin an eight-year national tour, during which it will reach more than one million people.
In 2018, the Croucher Foundation conducted its third annual mapping exercise for the out-of-school STEM learning ecosystem in Hong Kong.
The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with over 3,000 discrete activities covering a very wide range of science disciplines. This third report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out-of-school STEM activities in Hong Kong.
STEM educators are eager to foster long term collaboration with
DATE:
TEAM MEMBERS:
Siu Po LeeDavid FosterThe Croucher Foundation
This project responds to calls to increase children's exposure and engagement in STEM at an early age. With the rise of the maker-movement, the informal and formal education sectors have witnessed a dramatic expansion of maker and tinkering spaces, programs, and curricula. This has happened in part because of the potential benefits of tinkering experiences to promote access and equity in engineering education. To realize these benefits, it is necessary to continue to make and iterate design and facilitation approaches that can deepen early engagement in disciplinary practices of engineering and other STEM-relevant skills. This project will investigate how stories can be integrated into informal STEM learning experiences for young children and their families. Stories can be especially effective because they bridge the knowledge and experiences young children and their caregivers bring to tinkering as well as the conversations and hands-on activities that can extend that knowledge. In addition, a unique contribution of the project is to test the hypothesis that stories can also facilitate spatial reasoning, by encouraging children to think about the spatial properties of their emerging structures.
This project uses design-based research methods to advance knowledge and the evidence base for practices that engender story-based tinkering. Using conjecture mapping, the team will specify their initial ideas and how it will be evident that design/practices impact caregivers-child behaviors and learning outcomes. The team will consider the demographic characteristics, linguistic practices, and funds of knowledge of the participants to understand the design practices (resources, activities) being implemented and how they potentially facilitate learning. The outcome of each study/DBR cycle serves as inputs for questions and hypotheses in the next. A culturally diverse group of 300+ children ages 5 to 8 years old and their parents at Chicago Children's Museum's Tinkering Lab will participate in the study to examine the following key questions: (1) What design and facilitation approaches engage young children and their caregivers in creating their own engineering-rich tinkering stories? (2) How can museum exhibit design (e.g., models, interactive displays) and tinkering stories together engender spatial thinking, to further enrich early STEM learning opportunities? and (3) Do the tinkering stories children and their families tell support lasting STEM learning? As part of the overall iterative, design-based approach, the team will also field test the story-based tinkering approaches identified in the first cycles of DBR to be most promising.
This project will result in activities, exhibit components, and training resources that invite visitors' stories into open-ended problem-solving activities. It will advance understanding of mechanisms for encouraging engineering learning and spatial thinking through direct experience interacting with objects, and playful, scaffolded (guided) problem-solving activities.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This video captures the energy and potetial of the Designing our Tomorrow project. It is intended to complement presentations and posters about Designing our Tomorrow.
The Designing Our Tomorrow project aims to develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. Designing our Tomorrow seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices
Organizations, institutions, or initiatives often do not engage these influential adults as effectively as they might, nor are they always sensitive to the perspectives, needs, and expertise that caregivers bring to the activities in which their children participate. STEM educators and science communicators can better support youth when they effectively engage parents in relevant aspects of the work by considering whether parents are part of the intended audience and if so, how they can participate.
About this resource:
This is a practice brief produced by CAISE's Broadening
DATE:
TEAM MEMBERS:
Dale McCreedyMicaela BalzerBhaskar UpadhyayCenter for Advancement of Informal Science Education (CAISE)
This poster shows an overview of the The Designing Our Tomorrow (DOT) project. The project aims to develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. DOT seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices.
In this paper, we introduce the Exploratory Behavior Scale (EBS), a quantitative measure of young children's interactivity. More specifically, the EBS is developed from the psychological literature on exploration and play and measures the extent to which preschoolers explore their physical environment. A practical application of the EBS in a science museum is given. The described study was directed at optimizing parent guidance to improve preschoolers' exploration of exhibits in science center NEMO. In Experiment 1, we investigated which adult coaching style resulted in the highest level of