In this paper, we take an in-depth look at the physics faculty and student volunteers, which we will refer to as the program personnel, involved in informal physics programs to better understand their roles and responsibilities, their interactions with audiences, and their connectedness with content and activities. Understanding the complexities between programs, personnel, and audiences allows us to look for areas to improve informal physics programs in being inclusive, in being equitable and accessible, in supporting physics students who participate, and in connecting more strongly to the
This Informal Learning Review article briefly recounts the activities of Center for Advancement of Informal Science Education's (CAISE) over three award periods, from 2007 through 2022. It includes links to key CAISE resources and event documentation. CAISE sunsetted its activities in early 2022 and passed the baton of leadership of the National Science Foundation (NSF) Advancing Informal STEM Learning (AISL) program resource center to REVISE- the Reimagining Equity and Values in Informal STEM Education center.
The Joseph Moore Museum at Earlham College will revise its interpreter training and educational programs to reflect current best practices in participatory STEM education. This project will include strengthening their programs to better prepare undergraduate educators, as well as updating the delivery of their top three requested programs to ensure learner-centered experiences. The project will include the development of a training program modeled on a combination of principles set out by the National Association of Interpretation and the Reflections on Practice program. Undergraduate educators will undergo systematic training in the fundamentals of educational theory and practice and benefit from a program of sustained evaluation and mentorship.
In this chapter, I offer the National Black Male College Achievement Study (NBMCAS) as an example of how to explore and better understand the enablers of minority student achievement in STEM. Methods employed in the national study are described in the next section, followed by the presentation of an anti-deficit achievement framework for research on students of color at various junctures of the STEM pipeline, from K–12 schools through doctoral degree attainment and transitions into science research and long-term industry careers. Though informed by and conceptually similar to the framework
Environmental educators have used guided-inquiry in natural and supportive learning environments for decades, but comparatively little programming and research has focused on experiences in urban environments, including in constructed ecosystems like green roofs, or impacts on older youth and adults. To address this gap, we designed a tiered, near-peer research mentoring program called Project TRUE (Teens Researching Urban Ecology) and used a mixed-methods approach to evaluate impacts on undergraduates serving as research mentors. During the 11-week program, undergraduates conducted
Science fairs offer potential opportunities for students to learn first-hand about the practices of science. Over the past six years we have been carrying out voluntary and anonymous surveys with regional and national groups of high school and post high school students to learn about their high school science fair experiences regarding help received, obstacles encountered, and opinions about the value and impact of science fair. Understanding what students think about science fairs will help educators make science fairs more effective learning opportunities. In this paper, we focus on the
Presentation slides and narration for the NARST 2022 Annual Conference. In this presentation we summarize findings from our interviewed with undergraduate STEM majors who identify as Latine, homing in on the ways in which they characterize "STEM" and "STEM people" and their descriptions of K-12 experiences that contributed to their characterizations of these concepts.
An individual's sense of themselves as a “STEM person” is largely formed through recognition feedback. Unfortunately, for many minoritized individuals who engage in STEM (science, technology, engineering, and mathematics) in formal and informal spaces, this recognition often adheres to long-standing exclusionary expectations of what STEM participation entails and institutionalized stereotypes of what it means to be a STEM person. However, caregivers, who necessarily share cultural backgrounds, norms, and values with their children, can play an important role in recognizing their children's
DATE:
TEAM MEMBERS:
Heidi CianRemy DouSheila CastroElizabeth Palma-D'souzaAlexandra Martinez
Background: Authentic research experiences and mentoring have positive impacts on fostering STEM engagement among youth from backgrounds underrepresented in STEM. Programs applying an experiential learning approach often incorporate one or both of these elements, however, there is little research on how these factors impact youth’s STEM engagement during the high school to college transition. Purpose: Using a longitudinal design, this study explored the impact of a hands-on field research experience and mentoring as unique factors impacting STEM-related outcomes among underrepresented youth
This project addresses a longstanding problem in informal science education: how to increase the likelihood of consequential science, technology, engineering, and mathematics (STEM) learning from short duration experiences such as field trips. Although informal learning experiences can greatly contribute to interest in and knowledge of science, there is a shared concern among educators and researchers that students may have difficulty recalling and using scientific information and practices emphasized during these experiences, even though doing so would further their science learning. Nonetheless, science learning is rarely, if ever, a "one-shot deal." Children acquire knowledge about science cumulatively across different contexts and activities. Therefore, it is important that informal science learning institutions identify effective practices that support the consolidation of learning and memory from exhibit experiences to foster portable, usable knowledge across contexts, such as from informal science learning institutions, to classrooms, and homes. To this end, this Research in Service to Practice project seeks to harness the power and potential of visual representations (e.g., graphs, drawings, charts, maps, etc.) for enhancing learning and encouraging effective reflection during and after science learning experiences. The project promises to increase learning for the 9,000+ 5th and 6th grade students from across the rurality and growing diversity of the state of Maine who annually participate in LabVenture, a 2.5-hour exploration of the Gulf of Maine ecosystem at Gulf of Maine Research Institute. The research will provide new and actionable informal science learning practices that promote engagement with visual representations and reflection, and science understandings that can be applied broadly by informal science institutions. This project is funded by the Advancing Informal STEM Learning (AISL) and the Discovery Research PreK-12 (DRK-12) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the DRK-12 program goal of enhancing the learning and teaching of STEM by preK-12 students and teachers.
The project is grounded in the idea that visual representations, including drawings, can both enhance science learning and encourage reflection on doing science that can support extension of that learning beyond a singular informal science experience. The project uses design-based research to address the following research questions: (1) Does reflection during an informal science learning experience promote students’ retention and subsequent use of science information and practices that are part of the experience? (2) Does interpreting and constructing visual representations, such as drawings, improve students’ understanding and retention of information, and if so, how and when? and (3) Does combining visual representations and narrative reflections confer benefits on students’ science learning and engagement in science practices both during the informal learning experience, and later in their classrooms and at home? These questions will be pursued in collaboration with practitioners (both informal educators and classroom teachers) and a diverse team of graduate and undergraduate student researchers. Approximately 600 student groups (roughly 3000 individual students) will be observed during the LabVenture experience, with further data collection involving a portion of these students at school and at home. The project will yield resources and video demonstrations of field-tested, empirically based practices that promote engagement with visual representations and reflection, and science understandings that can travel within students' learning ecosystem. In support of broadening participation, the undergraduate/graduate student researchers will gain wide understanding and experience connecting research to practice and communicating science to academic and nonacademic audiences.
Persistent racial injustices and inequities in the United States and in STEM fields underscore the need for creative, research-based approaches to address these concerns. In particular, creative approaches are needed for studying and addressing racial injustices and inequities in STEM education, where racial equity and STEM learning are both given careful and thoughtful consideration. This project focuses on supporting emerging scholars who have new ideas and approaches for approaching racial equity in their scholarship and work. This workshop, implemented as a series of sessions over the course of a year, will support early career scholars in STEM education and the learning sciences in preparing proposals to submit to the National Science Foundation. The workshop is designed to serve scholars who are within five years of obtaining their PhD and who have never before been principal investigator or co-principal investigator of a federally-funded grant. Participants will include early career scholars who focus their work on racial equity. Too often, such scholars have indicated that they have received little to no training on writing grant proposals.
Ten participants will be supported by the project through a year-long series of workshops that include different aspects of the grant writing process including reading through a solicitation, writing a narrative, and creating a budget. In addition to these workshop sessions, the project approach also considers the importance of a professional network and of mentoring, informed by a Communities of Practice theoretical framework and existing research on mentoring practices. As such, each early career scholar will be paired with a senior mentor in the field whose work is aligned with the mentee's. The outcomes of the workshop for early career scholars will include a complete or nearly complete proposal that is aligned with one of the programs within the NSF's Division of Research on Learning. The workshop will highlight strategies for developing CAREER proposals along with considerations for preparing proposals for other programs. More generally, the workshop will create a model for supporting and mentoring early career scholars in proposing STEM education projects centered in racial equity work and will be able to identify areas of need for successful grant proposal writing. All workshop materials will be made freely available to the general public.
The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project is also funded through the Advancing Informal STEM Learning (AISL), CS for All: Research and RPPs, and Innovative Technology Experiences for Students and Teachers (ITEST) programs.